A summary of carbon dioxide to elemental carbon (CTEC) research and development history is given in Table K-1. Table K-1 not only lists the major technology and the major reaction conditions used for CTEC but also the structure characteristics of CTEC products. The table shading helps to cluster rows by method; blue represents thermochemical, yellow represents electrochemical, orange represents photochemical, and green represents plasmachemical processes.
TABLE K-1 Relationship Among Carbon Dioxide to Elemental Carbon Methods, Reaction Conditions, and Generated Products
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| Thermochemical | Cation-excess | 1 | 1990 | 3 g cation-excess magnetite Reaction system: batch Reaction time: 1.7 h |
Unknown-structure carbon | Tamaura and Tahata (1990) |
| Cation-excess | 2 | 1992 | 2.0 g active wustite (FeδO, with a δ value of 0.98) Reaction system: batch Reaction temperature: 300°C |
Unknown-structure carbon | Kodama et al. (1992) | |
| Cation-excess | 3 | 1992 | Oxygen-deficient magnetite Reaction system: batch Reaction temperature: 300°C |
Unknown-structure carbon | Tamaura and Nishizawa (1992) | |
| Cation-excess | 4 | 1993 | Rhodium-bearing magnetite Reaction temperature: 300°C |
Unknown-structure carbon | Akanuma et al. (1993a) | |
| Cation-excess | 5 | 1993 | Oxygen-deficient Mn(II) ferrite Reaction temperature: 300°C |
Unknown-structure carbon | Tabata et al. (1993a) | |
| Cation-excess | 6 | 1993 | Oxygen-deficient Mn(II)-bearing ferrites (MnxFe3–xO4–δ, O≤x≤1, δ>0) Reaction system: semi-batch Reaction temperature: 300°C |
Unknown-structure carbon | Tabata et al. (1993b) | |
| Cation-excess | 7 | 1993 | Oxygen-deficient magnetite (ODM) Reaction system: batch Reaction temperature: 520°C |
Mixture of carbon nanomaterials (CNMs) | Akanuma et al. (1993b) | |
| Cation-excess | 8 | 1994 | Hydrogen-activated Ni(II)-bearing ferrite Reaction temperature: 300°C |
Unknown-structure carbon | Kato et al. (1994) | |
| Cation-excess | 9 | 1994 | Ni(II)- and Co(II)-bearing ferrites Reaction system: batch Reaction temperature: 300°C |
Unknown-structure carbon | Kodama et al. (1994b) | |
| Cation-excess | 10 | 1994 | Oxygen-deficient Zn II-bearing ferrites (ZnxFe3–xO4 –δ, 0 ≤x≤1, δ>0) Reaction system: batch Reaction temperature: 300°C |
Unknown-structure carbon | Tabata et al. (1994a) | |
| Cation-excess | 11 | 1994 | Oxygen-deficient magnetite Reaction system: batch Reaction temperature: 350°C |
Graphite | Tsuji et al. (1994) | |
| Cation-excess | 12 | 1994 | Oxygen-deficient Zn(II)-bearing ferrites (ZnxFe3–xO4–δ, 0≤x≤l, δ>0) Reaction system: batch Reaction temperature: 520°C |
Unknown-structure carbon | Tabata et al. (1994b) | |
| Cation-excess | 13 | 1994 | Ni(II)- and Co(II)-bearing ferrites Reaction system: batch Reaction temperature: 300°C |
Graphite | Kodama et al. (1994a) | |
| Cation-excess | 14 | 1995 | Ni(II)-bearing ferrite/magnetite Reaction system: batch Reaction temperature: 300°C |
Unknown-structure carbon | Kodama et al. (1995c) | |
| Cation-excess | 15 | 1995 | Cation-excess magnetite Reaction temperature 80°C (358 K) | Unknown-structure carbon | Zhang et al. (1995) | |
| Cation-excess | 16 | 1995 | Oxygen-deficient Ni(II)-bearing ferrite (ODNF: Ni0.39Fe2.61O4–δ) Reaction temperature 300°C | Unknown-structure carbon | Kodama et al. (1995a) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| Cation-excess | 17 | 1995 | Ni(II)-bearing ferrite (UNF) Ni2+0.36Fe2+0.45Fe3+2.19O4.10 Reaction system: batch Reaction temperature: 300°C |
Unknown-structure carbon | Kodama et al. (1995b) | |
| Cation-excess | 18 | 1995 | Oxygen-deficient magnetite Reaction system: semi-batch Reaction temperature: 300°C |
Unknown-structure carbon | Wada et al. (1995) | |
| Cation-excess | 19 | 1996 | Cation-excess magnetite Reaction system: batch Reaction temperature: 290°C (563 K) |
Unknown-structure carbon | Zhang et al. (1996) | |
| Cation-excess | 20 | 1996 | 1 g Ni(II)-bearing ferrite (NF) Reaction system: batch Reaction temperature: 300°C Reaction time: 60 min |
Unknown-structure carbon | Tsuji et al. (1996a) | |
| Cation-excess | 21 | 1996 | Impregnated Rh, Pt, and Ce on Ni(II)-bearing ferrite (NF) Reaction system: batch Reaction temperature: 300°C |
Unknown-structure carbon | Tsuji et al. (1996b) | |
| Cation-excess | 22 | 1997 | 1 g Nanophase Zn ferrites Reaction system: batch Reaction temperature: 300°C Reaction time: 30 min |
Unknown-structure carbon | Komarneni et al. (1997) | |
| Cation-excess | 23 | 1997 | 0.3 kg Ni ferrite Reaction system: semi-batch Reaction temperature: 350°C |
Unknown-structure carbon | Yoshida et al. (1997) | |
| Cation-excess | 24 | 1997 | Wurtzite (Fe1–yO); 500°C (773 K) Reaction system: semi-batch |
Unknown-structure carbon | Ehrensberger et al. (1997) | |
| Cation-excess | 25 | 1998 | Oxygen-deficient Ni(II)-bearing ferrite (ODNF) | Unknown-structure carbon | Sano et al. (1998) | |
| Cation-excess | 26 | 1999 | 20 g active wustite (FeδO, with a δ value of 0.98) Reaction system: batch Reaction temperature: 300°C (573 K) |
Unknown-structure carbon | Zhang et al. (1999) | |
| Cation-excess | 27 | 2000 | 20 g oxygen-deficient magnetite Reaction system: batch Reaction temperature: 300°C Reaction time: 180 min |
Unknown-structure carbon | Zhang et al. (2000a) | |
| Cation-excess | 28 | 2000 | 20 g oxygen-deficient magnetite Reaction system: batch Reaction temperature: 300°C Reaction time: 180 min |
Unknown-structure carbon | Zhang et al. (2000b) | |
| Cation-excess | 29 | 2001 | 1 g ultra-fine (Ni,Zn)-ferrites Reaction system: semi-batch Reaction temperature: 300°C Reaction time: 7 min |
Unknown-structure carbon | Kim et al. (2001) | |
| Cation-excess | 30 | 2001 | (Nix, Zn1–x) Fe2O4–δ ferrites Reaction system: semi-batch Reaction temperature: 300°C |
Unknown-structure carbon | Kim and Ahn (2001) | |
| Cation-excess | 31 | 2001 | Nano-size ferrites (Ni0.5Cu0.5) Fe2O4 Reaction system: semi-batch Reaction temperature: 800°C |
Unknown-structure carbon | Shin et al. (2004) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| Cation-excess | 32 | 2004 | (Mn0.67Ni0.33) Fe2O4 Reaction system: semi-batch Reaction temperature: 300°C |
Unknown-structure carbon | Hwang and Wang (2004) | |
| Cation-excess | 33 | 2005 | Co-doped ferrite (NiFe2O4) | Unknown-structure carbon | Fu et al. (2005) | |
| Cation-excess | 34 | 2006 | CoFe2O4 nanoparticles Reaction temperature: 500°C |
Carbon nanotubes (CNTs) | Khedr et al. (2006) | |
| Cation-excess | 35 | 2006 | Spinel structure NiFe2–xCrxO4 (x = 0, 0.08) Reaction system: batch |
Unknown-structure carbon | Linshen et al. (2006) | |
| Cation-excess | 36 | 2007 | 5 g mechanically milled magnetite Reaction system: batch Reaction temperature: 500°C (773 K) Reaction time: 3 hours |
Graphite | Yamasue et al. (2007b) | |
| Cation-excess | 37 | 2007 | 0.5 g nickel ferrite Ni Fe2O4–δ Reaction system: batch Reaction temperature: 320°C Reaction time: 120 min |
Unknown-structure carbon | Fu et al. (2007) | |
| Cation-excess | 38 | 2007 | 2 g Ni-ferrite doping different contents of Cr3+ Reaction system: batch |
Mixture of CNMs | Ma et al. (2007b) | |
| Cation-excess | 39 | 2007 | Nanocrystallines Fe2O3; 400–600/0°C; Reaction system: semi-batch |
CNTs | Khedr et al. (2007) | |
| Cation-excess | 40 | 2007 | NiCr0.08Fe1.92O4; 310°C; Reaction system: batch |
CNMs | Ma et al. (2007a) | |
| Cation-excess | 41 | 2007 | Milled wustite powders; 500°C (773 K); Reaction system: batch |
Mixture of CNMs | Yamasue et al. (2007a) | |
| Cation-excess | 42 | 2009 | Ni0.49Cu0.24Zn0.24Fe2O4; 310°C Reaction system: batch |
Amorphous carbon | Ma et al. (2009b) | |
| Cation-excess | 43 | 2009 | CoCr0.08Fe1.92O4 Reaction system: semi-batch Reaction temperature: 310°C |
Unknown-structure carbon | Ma et al. (2009a) | |
| Cation-excess | 44 | 2011 | 1.5–2 g nickel ferrite nanoparticles Reaction system: semi-batch Reaction temperature: 300°C Reaction time: 24 min O2 detected |
Unknown-structure carbon | Lin et al. (2011) | |
| Cation-excess | 45 | 2011 | MFe2O4 (M = Ni, Co, Cu, Zn) Reaction system: batch Reaction temperature: 350°C |
Unknown-structure carbon | Ma et al. (2011) | |
| Cation-excess | 46 | 2012 | 1 g zinc-modified zeolite Y material Reaction system: batch Reaction temperature: 300°C Reaction time: 8 h |
Unknown-structure carbon | Wang et al. (2012) | |
| Cation-excess | 47 | 2013 | 1.5-2 g nickel ferrite nanoparticles Reaction system: semi-batch Reaction temperature: 300°C Reaction time: 20 min |
Unknown-structure carbon | Lin et al. (2013) | |
| Cation-excess | 48 | 2015 | H2-reduced Fe2O3 and Fe3O4 Reaction system: batch Reaction temperature: 400°C |
Unknown-structure carbon | Li et al. (2015) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| Cation-excess | 49 | 2016 | Spinel M-ferrites (M=Co, Ni, Cu, Zn) Reaction system: batch Reaction temperature: 310°C |
Unknown-structure carbon | Jiaowen et al. (2016) | |
| Cation-excess | 50 | 2017 | Ba2Ca0.66Nb1.34–xFexO6–δ (BCNF) Reaction system: semi-batch Reaction temperature: 300°C |
Unknown-structure carbon | Mulmi et al. (2017) | |
| Cation-excess | 51 | 2019 | 1.5 g SrFeCo0.5Ox Reaction system: semi-batch Reaction temperature: 300°C |
Unknown-structure carbon | Kim et al. (2019) | |
| Cation-excess | 52 | 2019 | Fe3O4 Reaction temperature: 600°C |
CNMs | Jo et al. (2019) | |
| Cation-excess | 53 | 2020 | 1.0 g SrFeO3–x Reaction system: semi-batch Reaction time: 170 min |
Unknown-structure carbon | Sim et al. (2020) | |
| Cation-excess | 54 | 2021 | 0.1 g milled natural magnetite Reaction system: semi-batch Reaction time: 90 min |
Amorphous carbon | Liu et al. (2021) | |
| Cation-excess | 55 | 2021 | Neat NaY zeolite (control) and Zn-NaY zeolite Reaction temperature: 300–500°C |
Unknown-structure carbon | Bajaj et al. (2021) | |
| Cation-excess | 56 | 2024 | Spinel Nano-MnxFe3–xO4 Reaction system: semi-batch Reaction temperature: 340°C |
Unknown-structure carbon | Wang et al. (2024) | |
| Reacting with metals | 57 | 1978 | Two blocks of dry ice with magnesium turnings | Unknown-structure carbon | Driscoll (1978) | |
| Reacting with metals | 58 | 2001 | 2.6 g CO2 + 0.3 g Mg Reaction system: closed cell Reaction temperature: 1000°C Reaction time: 3 h |
Mixture of CNMs | Motiei et al. (2001) | |
| Reacting with metals | 59 | 2003 | CO2: 8.0 G; metallic Li: 0.5 g Reaction pressure: 700 atm Reaction temperature: 550°C Reaction time:10 h |
CNTs | Lou et al. (2003) | |
| Reacting with metals or metal oxides | 60 | 2008 | React with Zn/ZnO and FeO/Fe3O4 | Unknown-structure carbon | Gálvez et al. (2008) | |
| Reacting with metals | 61 | 2009 | 0.5 g metallic lithium; 8.0 g dry ice Reaction temperature: 700°C Reaction pressure: 100 MPa Reaction time: 10 h |
C60 | Chen and Lou (2009) | |
| Reacting with metals | 62 | 2011 | 3 g of Mg ribbon ignited inside a dry ice vessel, covered by another dry ice slab | Graphene | Chakrabarti et al. (2011) | |
| Reacting with metals | 63 | 2013 | 2 g of Mg ribbon ignited inside a dry ice vessel at room temperature | Graphene | Moghaddam et al. (2013) | |
| Reacting with metals | 64 | 2014 | Lithium and dry ice, ignited with an oxygen–hydrogen torch | Graphene | Poh et al. (2014) | |
| Reacting with metals | 65 | 2014 | 2.0 g Mg ribbon ignited inside a vessel containing dry ice at room temperature | Graphene | Samiee and Goharshadi (2014) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| Reacting with metals | 66 | 2014 | Mg and Ca metals, ignited in a CO2 atmosphere | Graphene | Zhang et al. (2014) | |
| Reacting with metals | 67 | 2015 | Mg powder: 1.5 g CO2 flowrate: 70 mL/min Reaction temperature: 680°C Reaction time: 60 min |
Graphene | Xing et al. (2015 | |
| Reacting with metals | 68 | 2015 | CO2 reacted with 1 g Mg ribbons Reaction system: semi-batch Reaction temperature: 800°C |
CNTs | Wang et al. (2015) | |
| Reacting with metals | 69 | 2016 | React with liquid Na Reaction temperature: 600°C |
Graphene | Wei et al. (2016) | |
| Reacting with metals | 70 | 2016 | React with liquid Li Reaction temperature: 550°C |
Graphene | Smith et al. (2016) | |
| Reacting with metals | 71 | 2017 | React with liquid K Reaction temperature: 550°C |
Graphene | Wei et al. (2017b) | |
| Reacting with metals | 72 | 2017 | React with liquid Na Reaction temperature: 550°C |
Carbon nanowires (CNWs) | Wei et al. (2017a) | |
| Reacting with metals | 73 | 2017 | 0.1 mol of potassium (from Aldrich) reacted with CO2 in a batch ceramic-tube reactor at a temperature of 550°C and an initial pressure of 50 psi for a selected time (12, 24, or 48 h) | Graphene | Wei et al. (2017c) | |
| Reacting with metals | 74 | 2018 | Burning of Mg, Zn, and Ni metals in presence of CO2 (dry ice) | Mixture of CNMs | Bagotia et al. (2018) | |
| Reacting with metals | 75 | 2019 | Reacting Ni and Mg with CO2 Reaction temperature: 650°C |
Mixture of CNMs | Baik et al. (2020) | |
| Reacting with metals | 76 | 2020 | React with Alkali metals, including lithium (Li), sodium (Na), and potassium (K) | Graphene | Sun and Hu (2020) | |
| Reacting with metals | 77 | 2020 | CO2 reacted with Na liquid | Graphene | Wang et al. (2020c) | |
| Reacting with metals | 78 | 2021 | Zn/Mg M ratios: 0, 0.5, 1, 2, 3, 4, 5, and 6 CO2 flowrate: 70 mL/min Reaction time: 180 min |
Graphene | Luchetta et al. (2021) | |
| Reacting with metals | 79 | 2021 | Mg metal ribbon ignited in presence of CO2 (dry ice, two blocks) | Mixture of CNMs | Sharma and Bagotia (2021) | |
| Reacting with metals | 80 | 2022 | Reduction agent: a eutectic of gallium and indium (EGaIn alloy) Reaction temperature: 25°C and 500°C |
Unknown-structure carbon | Zuraiqi et al. (2022) | |
| Reacting with metals | 81 | 2022 | Mg molten temperature:720°C CO2 flowrate: 900 mL/min | Graphene | Li et al. (2022) | |
| Reacting with metals | 82 | 2022 | Mg molten temperature:720°C CO2 flowrate: 995 mL/min Reaction time: 60 min |
Graphene | Wei et al. (2022) | |
| Reacting with metals | 83 | 2022 | Mg and CO2 ignition in reaction chamber | Graphene | Colson et al. (2022) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| Reacting with metals | 84 | 2023 | Reducing with Mg and Ga Reaction temperature: 40°C—near room temperature |
Unknown-structure carbon | Ye et al. (2023) | |
| Reacting with metals | 85 | 2023 | Mg molten temperature:720°C CO2 flowrate: 500 mL/min Reaction time: 30 min |
Graphene | Li et al. (2023) | |
| Reacting with H2 | 86 | 1991 | Catalyst: WO3 (H2) Reaction system: batch Reaction temperature: 700°C (973 K) |
Unknown-structure carbon | Ishihara et al. (1991) | |
| Reacting with H2 | 87 | 2008 | Catalyst: 3%Ni-K/Al2O3 Reaction temperature: 500°C |
Carbon nanofibers (CNFs) | Chen et al. (2011) | |
| Reacting with H2 | 88 | 2009 | Catalyst: Ni/Al2O3 Reaction temperature: 440–500°C |
CNFs | Chen et al. (2009) | |
| Reacting with H2 | 89 | 2010 | Catalyst: Ni/Al2O3 Reaction temperature: 440–500°C |
CNFs | Chen et al. (2010) | |
| Reacting with H2 | 90 | 2022 | Catalyst: Ni/Al2O3 Reaction pressure: 1 atm Reaction temperature: 500°C |
CNFs | Lin et al. (2022) | |
| Reacting with LiH | 91 | 2019 | Reacting LiH with CO2 Reaction pressure: 5, 15, 30 bar Reaction temperature: 210°C, 340°C, 470°C Reaction time: 30 s |
CNMs | Liang et al. (2019) | |
| Reacting with NaBH4 | 92 | 2006 | Catalyst: 1.5 g NaBH4 Reaction system: batch Reaction temperature: 700°C Reaction time: 8 h |
CNTs | Lou et al. (2006) | |
| Reacting with NaBH4 | 93 | 2020 | Catalyst: NiCl2; reducing agent: NaBH4 Reaction pressure: 1 atm Reaction temperature: 500–700°C |
CNTs | Kim et al. (2020b) | |
| Reacting with strong reducing agents | 94 | 1991 | Catalyst: WO3 Reaction temperature: 700°C |
Unknown-structure carbon | Ishihara et al. (1991) | |
| Reacting with strong reducing agents | 95 | 2021 | Reaction system: semi-batch CO2 flowrate: 100 mL/min Reaction pressure: 1 atm Reaction temperature: 423°C (700 K) Reaction time: 4 h |
Mixture of CNMs | Watanabe and Ohba (2021) | |
| Reacting with strong reducing agents (CVD) | 96 | 2013 | Ni/Al2O3 Reaction temperature: 1000°C |
Graphene | Luo et al. (2013) | |
| Reacting with strong reducing agents (CVD) | 97 | 2015 | Monometallic FeNi0–Al2O33 (FNi0) and bimetallic FeNix–Al2O3 (FNi2, FNi4, FNi8, and FNi20) Reaction temperature: 700°C |
CNMs | Hu et al. (2015) | |
| Reacting with strong reducing agents (CVD) | 98 | 2019 | Cu–Pd alloy Reaction pressure: 1 atm Reaction temperature: 1000°C |
Graphene | Molina-Jirón et al. (2019) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| Reacting with strong reducing agents (CVD) | 99 | 2020 | 30 mg Fe, Ni, Co Reaction temperature: 560°C Reaction time: 1 h |
CNFs | Nakabayashi et al. (2020) | |
| Reacting with strong reducing agents (CVD) | 100 | 2022 | Ni/Al2O3 Reaction temperature: 1050°C |
Graphene | Gong et al. (2022) | |
| Reacting with strong reducing agents (CVD) | 101 | 2007 | Catalyst: Fe/CaO Reaction system: semi-batch Reaction temperature: 790–810°C Reaction time: 45 min |
CNTs | Xu and Huang (2007) | |
| Reacting with strong reducing agents (CVD) | 102 | 2015 | Reaction system: semi-batch Reaction temperature: 1060°C Reaction time: 60 min |
Graphene | Strudwick et al. (2015) | |
| Reacting with strong reducing agents (CVD) | 103 | 2015 | Reaction system: semi-batch Reaction temperature: ~1000°C Reaction time: 30 min |
Graphene | Seekaew et al. (2022) | |
| Reacting with strong reducing agents (CVD) | 104 | 2015 | Reaction system: semi-batch CO2 flowrate: 900 mL/min Reaction temperature:1100°C Reaction time: 60 min |
CNTs | Allaedini et al. (2015) | |
| Reacting with strong reducing agents (CVD) | 105 | 2016 | Reaction system: semi-batch; reaction temperature:1100°C; CO2 flowrate: 900 mL/min reaction time:1 h | Graphene | Allaedini et al. (2016a) | |
| Reacting with strong reducing agents (CVD) | 106 | 2016 | Ge/MgO Reaction system: semi-batch Reaction temperature: 1226°C |
CNTs | Allaedini et al. (2016b) | |
| Electrochemical | Electrochemical | 107 | 2013 | CO2 9.7% or 90% (CO2-Ar mixture); Electrolysis: 3.1 V (molten CaCl2–CaO) or 3.2 V (molten LiCl–Li2O) Reaction temperature: 654°C (923 K) |
Mixture of CNMs | Otake et al. (2013) |
| 108 | 2013 | Electrolysis current range: 0.2 mA–70 mA Reaction temperature: 750°C |
Unknown-structure carbon | Guo et al. (2013) | ||
| 109 | 2015 | Cathode: a coiled galvanized steel wire Anode: nickel Electrolyte: melt LiCO3 Reaction temperature: ~800°C Electrolysis current density: 0.1 A/cm2 |
CNFs | Ren et al. (2015a) | ||
| 110 | 2015 | Electrolyte: Li2CO3/Na2CO3 or Li2CO3/BaCO3 or Na2CO3/BaCO3 Cathode: a Muntz brass Anode: iridium foil Reaction temperature: 750°C Electrolysis current density (A/cm2): 0 ~ −1.2 Electrolysis voltage: <1 V |
Unknown-structure carbon | Ren et al. (2015b) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| 111 | 2016 | CO2 90% (CO2-Ar mixture) Cathode: metallic Ca Anode: ZrO2 Reaction temperature: 900°C (1173 K) |
CNTs | Ozawa et al. (2016) | ||
| 112 | 2016 | Cathode: a stainless steel Anode: RuO2–TiO2 Reaction temperature: 650–850°C |
Graphene | Hu et al. (2016) | ||
| 113 | 2016 | Cathode: a galvanized steel Anode: nickel Electrolyte: molten carbonate Reaction temperature: 725°C Reaction time: 1 h Electrolysis current density: 0.1 A/cm2 |
CNTs | Licht et al. (2016) | ||
| 114 | 2016 | Cathode: a Fe spiral Anode: a Ni-Cr spiral Electrolyte: Li2CO3-Na2CO3-K2CO3 (61:22:17 wt%, analytically pure) Electrolysis current densities: 200 mA/cm2 and 400 mA/cm2 Reaction temperature: 600°C |
CNTs | Wu et al. (2016) | ||
| 115 | 2016 | Cathode: galvanized steel Anode: nickel Electrolyte: lithiated molten carbonate |
CNTs | Lau et al. (2016) | ||
| 116 | 2017 | Cathode: three different steels (16 gauge galvanized steel wire, 316 stainless steel shim, and 1010 steel shim) Anode: untreated Ni wire, thermally oxidized Ni wire, and Ni wire coated with 500 cycles of Al2O3 Reaction temperature: 750°C Reaction time: 1 h Electrolysis current density: 0.1 A/cm2 |
CNTs | Douglas et al. (2017a) | ||
| 117 | 2017 | Cathode: Varieties of metals Anode: pure nickel or Nichrome wire Reaction temperature: 750°C Electrolysis current density; 0.1 A/cm2 |
CNTs | Johnson et al. (2017a) | ||
| 118 | 2017 | Cathode: a Ni sheet Anode: a graphite rod Electrolyte: 2 mol % CaCO3containing LiCl–KCl Reaction temperature: 450°C Reaction time: 1 h Electric voltage: 2.8 V |
Hollow carbon sphere (HCS) | Deng et al. (2017) | ||
| 119 | 2017 | Cathode: glassy carbon and graphite Anode: RuO2–TiO2 Electrolyte: molten CaCl2–NaCl–CaO Electrolysis current densities: 200 mA/cm2 Reaction temperature: 650–850°C |
CNTs | Hu et al. (2017) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| 120 | 2017 | Cathode: scrap metals including steel and brass; Anode: Al2O3 coated Ni wire Electrolyte: 40 g lithium carbonate Reaction temperature: 750°C |
CNTs | Douglas et al. (2017b) | ||
| 121 | 2017 | Cathode: a coiled galvanized steel wire Anode: nickel Electrolyte: molten Li2CO3 |
CNTs | Licht (2017a) | ||
| 122 | 2017 | Cathode: steel Anode: nickel Electrolyte: 50/50 wt% of Na2CO3 mixed with Li2CO3 |
CNTs | Ren et al. (2017) | ||
| 123 | 2017 | Cathode: nickel Anode: SnO2 Electrolyte: mixed melt of Li2CO3–Na2CO3–K2CO3–Li2SO4 (40.02:28.98: 23: 8 mol%) Reaction temperature: 450°C |
CNMs | Chen et al. (2017c) | ||
| 124 | 2017 | Cathode: a U-shape Ni sheet Anode: SnO2 or platinum plated titanium Electrolyte: mixed melt of Li2CO3–Na2CO3–K2CO3–Li2SO4 (40: 29: 23: 8 mol%) Reaction temperature: 475–825°C |
Graphite | Chen et al. (2017a) | ||
| 125 | 2017 | Cathode: U-shape Ni sheet Anode: SnO2 Electrolyte: mixed melt of Li2CO3–Na2CO3–K2CO3 (43.5:31.5:25.0 mol%) Reaction temperature: 450°C |
Amorphous carbon | Chen et al. (2017b) | ||
| 126 | 2017 | Electrolyte: Li2CO3+ 0.1 wt% LiBO2 Cathode: Monel/Munz brass/(Ni+Cu alloy) Anode: iridium/Nichrome 60 Reaction temperature: 770°C Electrolysis current density (A/cm2): 0.1–0.2 |
CNTs | Johnson et al. (2017b) | ||
| 127 | 2018 | Cathode: a galvanized iron Anode: nickel Reaction pressure: 1 atm Reaction time: 4 h Electrolysis voltage: 0.5 ~ 2.5 V Current density: 0.2 A/cm2 |
CNTs | Li et al. (2018) | ||
| 128 | 2018 | Cathode: 316 stainless steel Anode: Al2O3-coated Ni wire Reaction pressure: 1 atm Reaction temperature: 750°C Reaction time: 1 h Electrolysis current density: 0.1 A/cm2 |
CNTs | Douglas et al. (2018) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| 129 | 2018 | Cathode: a Ni wire Anode: a graphite rod Electrolyte: CaCO3-containing LiCl–KCl Reaction temperature: 450°C, 550°C, 650°C Electric voltage: 2.8 V |
HCS | Deng et al. (2018) | ||
| 130 | 2019 | Electrolyte: calcium chloride anhydrous; calcium oxide; sodium carbonate; CO2 100% (1 mL/min) Electrolysis: 3.0 V Current: 10 A Reaction temperature: 850°C |
Graphite | Abbasloo et al. (2019) | ||
| 131 | 2019 | Cathode: graphite rod; Anode: RuO2–TiO2 Reaction temperature: 625/725°C Reaction time: 4 h; Electrolysis current: 0.75 A |
Graphite | Hu et al. (2019) | ||
| 132 | 2019 | Cathode: galvanized iron wire Anode: nickel wire Electrolyte: Pure Li2CO3 (40 g), Li/Ca (40 g Li2CO3-4 g CaCO3), Li/Sr (40 g Li2CO3-4 g SrCO3), and Li/Ba (40 g Li2CO3-4 g BaCO3) Electrolysis current densities: 200 mA/cm2 Reaction temperature: 500–850°C |
CNTs | Li et al. (2019) | ||
| 133 | 2019 | Cathode: galvanized steel Anode: Ir/Pt Electrolyte: Li2CO3 Reaction temperature: 450°C |
Carbon nano-onion | Liu et al. (2019) | ||
| 134 | 2019 | Cathode: copper/galvanized steel/Monel Electrolyte: molten Li2CO3 Reaction temperature: 770°C |
CNTs | Licht et al. (2019) | ||
| 135 | 2019 | Cathode: brass sheet Anode: Inconel 718 Electrolyte: Li2CO3-Na2CO3-LiBO2 or Li2CO3-K2CO3-LiBO2 Reaction temperature: 740°C |
CNTs | Wang et al. (2019) | ||
| 136 | 2019 | Electrocatalyst: cerium oxide Electrolyte: liquid metal-containing cerium (LMCe)—a dimethylformamide (DMF)-based electrolyte Reaction temperature: room temperature |
CNMs | Esrafilzadeh et al. (2019) | ||
| 137 | 2020 | Cathode: 5 cm2 galvanized (zinc coated) steel Anode: 5 cm2 Pt Ir foil anode Electrolysis current: 0.05 A, 0.10 A, 0.2 A, 0.4 A, 1 A, 2 A Reaction temperature: 730°C |
Graphene | Liu et al. (2020) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| 138 | 2020 | Cathode: protonic ceramic fuel cell (PCFC) Anode: solid oxide fuel cell (SOFC) Reaction temperature: above 900°C |
CNTs | Kim et al. (2020a) | ||
| 139 | 2020 | Cathode: 316 stainless steel with Fe deposited Anode: Copper wire, Platinum wire, and Alumina coated Ni wire Reaction time: 1 h Reaction temperature: 750°C Electrolysis current density (A/cm2): 0.05, 0.1, 0.2, 0.4 |
CNTs | Moyer et al. (2020) | ||
| 140 | 2020 | Cathode: Muntz brass Anode: Inconel 718, Nichrome or Incoloy Reaction temperature: 770°C Electrolysis current density; 0.1 A/cm2 |
CNTs | Wang et al. (2020d) | ||
| 141 | 2020 | Cathode: 0.25-inch-thick Muntz brass sheet Anode: 0.04-inch-thick Nichrome sheet Electrolyte: molten lithium carbonate Electrolysis current densities: 200 mA/cm2 Reaction temperature: 770°C |
CNTs | Wang et al. (2020b) | ||
| 142 | 2020 | Electrolyte: Na2CO3/Li2CO3 Cathode: a Muntz brass; Anode: an Inconel Reaction temperature: 670°C Electrolysis current density (A/cm2): 0.4 |
CNMs | Wang et al. (2020a) | ||
| 143 | 2021 | Electrolyte: 20% Na2CO3 + 80% Li2CO3 Cathode: a brass sheet Anode: an Inconel 718 sheet Reaction temperature: 750°C Electrolysis current density (A/cm2): 0.2 |
CNTs | Wang et al. (2021a) | ||
| 144 | 2021 | Electrolyte: ionic liquid (0.5M LiTFSI in 1-butyl-1-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI)) Cathode: 0.5M LiTFSI/Pyr14TFSI electrolyte and a porous carbon layer Anode: a stainless-steel coin cell current collector + a Li foil anode + a glass fiber separator Reaction temperature: room temperature |
Amorphous carbon | Wang et al. (2021b) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| 145 | 2022 | Electrolyte: lithium carbonate (0.1 wt% Fe2CO3) Cathode: a Muntz brass Anode: high-surface-area Inconel 600 (screen) on Inconel 718 Reaction temperature: 770°C Electrolysis current density: 0.15 mA/cm2 |
CNTs | Liu et al. (2022) | ||
| 146 | 2022 | Electrolyte: Li2CO3 Cathode: Stainless Steel 304 or a Muntz brass Anode: Nichrome A/C or Inconel 600/625 or Monel 400 Reaction temperature: 670°C Electrolysis current density (A/cm2): 0.01–0.4 |
Mixture of CNMs | Liu et al. (2022) | ||
| 147 | 2022 | Electrolyte: Na2CO3 + BaCO3 Cathode: a planar brass Anode: a planar Nichrome C Reaction temperature: 770°C. Electrolysis current density (A/cm2): 0.05/0.1 |
CNTs | Wang et al. (2023) | ||
| 148 | 2022 | Electrolyte: Li2CO3 + 0.1wt% Fe2O3 Cathode: Muntz brass Anode: Nichrome C Reaction temperature: 750°C Electrolysis current density (A/cm2): 0.6 |
CNMs | Liu et al. (2021) | ||
| 149 | 2022 | Metal electrocatalysts: Ag, Bi, Co, Zn, and Au Electrolyte: various ternary, binary, and aqueous electrolyte Applied potential: between −1.1 and −1.6 V versus Ag/AgCl Reaction temperature: room temperature |
Mixture of CNMs | Nganglumpoon et al. (2022) | ||
| 150 | 2022 | Electrolyte: electrodeposited Bi on Sn substrate Catholyte: mixture of PC:[BMIM] BF4:water Anolyte: KHCO3 Reaction temperature: room temperature Applied potential: −1.5 V versus Ag/AgCl |
Graphene | Pinthong et al. (2022) | ||
| 151 | 2023 | Catalyst: vanadium-based EGaIn (V-EGaIn) Onset potential (−0.97 V versus Ag/Ag+) Electrolyte: dimethylformamide (DMF) Electrolysis current density (mA/cm2): −0.4~0 |
Unknown-structure carbon | Irfan et al. (2023) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| 152 | 2023 | Electrolyte: Li2CO3 Cathode: nickel foam Anode: a glassy carbon rod Reaction temperature: 780°C Electrolysis current density (A/cm2): 0.6 |
Graphite | Thapaliya et al. (2023) | ||
| 153 | 2023 | Electrolyte: 0.01 M silver nitrate and 0.6 M of ammonium sulphate Cathode: copper substrate Anode: platinum rod Electrocatalyst: silver Reaction temperature: room temperature Applied potential: −1.6 V versus Ag/AgCl |
Mixture of CNMs | Watmanee et al. (2024) | ||
| 154 | 2023 | Metal electrocatalysts: Ag, Bi, Co, Zn Electrolyte: ternary electrolyte system containing [BMIM]+[BF4]−/ propylene carbonate/H2O Cathode: copper substrate; Anode: platinum rod Applied potential: between −1.1 and −1.6 V versus Ag/AgCl Reaction temperature: room temperature |
Amorphous carbon | Watmanee et al. (2022) | ||
| Electrothermochemical | 155 | 2016 | Cathode: galvanized steel Anode: nickel Electrolyte: mixed 13C lithium carbonate, 13C carbon dioxide, lithium carbonate and lithium oxide Reaction temperature: 750°C |
CNTs | Ren and Licht (2016) | |
| 156 | 2017 | Electrolyte: lithium carbonate Reaction temperature: 727°C Electrolysis current density (A/cm2): 0.1 |
CNFs | Licht (2017b) | ||
| 157 | 2024 | Cathode: stainless steel Anode: titanium Electrolyze: zero-gap MEA Catalyst loaded for the thermochemical reactor: Fe3Co6/CeO2 200 mg Reaction temperature: 450°C Electrolysis current density (A/cm2): −0.06, −0.1, −0.15, −0.2 |
CNFs | Xie et al. (2024) | ||
| Photochemical | Photochemical | — | — | — | — | — |
| Photo-thermochemical | 158 | 2013 | Catalyst: 1 g reduced NiFe2O4 Light source: 300 W UV lamp (365 nm of wavelength) | Mixture of CNMs | Duan et al. (2013) |
| Method | Method Detail | No. | Year | Main Reaction Conditions | Product | Reference |
|---|---|---|---|---|---|---|
| Plasmachemical | Plasmachemical | 159 | 2006 | Dielectric barrier discharge microplasma | Mixture of CNMs | Tomai (2007) |
| 160 | 2015 | Plasma zone: a stainless-steel rod of inner electrode and a copper foil of outer electrode; plasma power supply: a monopolar pulsed electric generator and a AC high-voltage generator | Unknown-structure carbon | Yap et al. (2015) | ||
| 161 | 2023 | Dielectric barrier discharge plasma Catalyst: dispersed liquid metal Ga | Amorphous carbon | Babikir et al. (2023) | ||
| Plasma-thermochemical | — | — | — | — | — |
Abbasloo, S., M. Ojaghi-Ilkhchi, and M. Mozammel. 2019. “Reduction of Carbon Dioxide to Carbon Nanostructures in Molten Salt: The Effect of Electrolyte Composition.” JOM 71:2103–2111.
Akanuma, K., K. Nishizawa, T. Kodama, M. Tabata, K. Mimori, T. Yoshida, M. Tsuji, and Y. Tamaura. 1993a. “Carbon Dioxide Decomposition into Carbon with the Rhodium-Bearing Magnetite Activated by H2-Reduction.” Journal of Materials Science 28(4):860–864. https://doi.org/10.1007/BF00400865.
Akanuma, K., M. Tabata, N. Hasegawa, M. Tsuji, Y. Tamaura, Y. Nakahara, and S. Hoshino. 1993b. “Characterization of Carbon Deposited from Carbon Dioxide on Oxygen-Deficient Magnetites.” Journal of Materials Chemistry 3(9):943–946. https://doi.org/10.1039/JM9930300943.
Allaedini, G., S.M. Tasirin, and P. Aminayi. 2015. “Synthesis of CNTs via Chemical Vapor Deposition of Carbon Dioxide as a Carbon Source in the Presence of NiMgO.” Journal of Alloys and Compounds 647:809–814.
Allaedini, G., S.M. Tasirin, and P. Aminayi. 2016a. “Synthesis of Graphene Through Direct Decomposition of CO 2 with the Aid of Ni–Ce–Fe Trimetallic Catalyst.” Bulletin of Materials Science 39:235–240.
Allaedini, G., S.M. Tasirin, and P. Aminayi. 2016b. “Yield Optimization of Nanocarbons Prepared via Chemical Vapor Decomposition of Carbon Dioxide Using Response Surface Methodology.” Diamond and Related Materials 66:196–205.
Babikir, A.H., M.G.M. Ekanayake, O. Oloye, J.D. Riches, K. Ostrikov, and A.P. O’Mullane. 2023. “Plasma-Assisted CO2 Reduction into Nanocarbon in Water Using Sonochemically Dispersed Liquid Gallium.” Advanced Functional Materials October:2307846. https://doi.org/10.1002/adfm.202307846.
Bagotia, N., H. Mohite, N. Tanaliya, and D.K. Sharma. 2018. “A Comparative Study of Electrical, EMI Shielding and Thermal Properties of Graphene and Multiwalled Carbon Nanotube Filled Polystyrene Nanocomposites.” Polymer Composites 39(S2):E1041–E1051. https://doi.org/10.1002/pc.24465.
Baik, S., J.H. Park, and J.W. Lee. 2020. “One-Pot Conversion of Carbon Dioxide to CNT-Grafted Graphene Bifunctional for Sulfur Cathode and Thin Interlayer of Li–S Battery.” Electrochimica Acta 330(January):135264. https://doi.org/10.1016/j.electacta.2019.135264.
Bajaj, N.K., S. Periasamy, R. Singh, Y. Tachibana, T. Daeneke, and K. Chiang. 2021. “The Catalytic Decomposition of Carbon Dioxide on Zinc-Exchanged Y-Zeolite at Low Temperatures.” Journal of Chemical Technology & Biotechnology 96(9):2675–2680. https://doi.org/10.1002/jctb.6815.
Chakrabarti, A., J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J.A. Maguire, and N.S. Hosmane. 2011. “Conversion of Carbon Dioxide to Few-Layer Graphene.” Journal of Materials Chemistry 21(26):9491–9493.
Chen, C., and Z. Lou. 2009. “Formation of C60 by Reduction of CO2.” The Journal of Supercritical Fluids 50(1):42–45. https://doi.org/10.1016/j.supflu.2009.04.008.
Chen, C.-S., J.-H. Lin, J.-H. Wu, and C.-Y. Chiang. 2009. “Growth of Carbon Nanofibers Synthesized from CO2 Hydrogenation on a K/Ni/Al2O3 Catalyst.” Catalysis Communications 11(3):220–224. https://doi.org/10.1016/j.catcom.2009.10.012.
Chen, C.-S., J.-H. Lin, J.H. You, and K.H. Yang. 2010. “Effects of Potassium on Ni-K/Al2O3 Catalysts in the Synthesis of Carbon Nanofibers by Catalytic Hydrogenation of CO2.” The Journal of Physical Chemistry. A 114(11):3773–3781. https://doi.org/10.1021/jp904434e.
Chen, C.-S., J.H. You, and C.C. Lin. 2011. “Carbon Nanofibers Synthesized from Carbon Dioxide by Catalytic Hydrogenation on Ni− Na/Al2O3 Catalysts.” The Journal of Physical Chemistry C 115(5):1464–1473.
Chen, Z., Y. Gu, L. Hu, W. Xiao, X. Mao, H. Zhu, and D. Wang. 2017a. “Synthesis of Nanostructured Graphite via Molten Salt Reduction of CO2 and SO2 at a Relatively Low Temperature.” Journal of Materials Chemistry A 5(39):20603–20607.
Chen, Z., Y. Gu, K. Du, X. Wang, W. Xiao, X. Mao, and D. Wang. 2017b. “Enhanced Electrocatalysis Performance of Amorphous Electrolytic Carbon from CO2 for Oxygen Reduction by Surface Modification in Molten Salt.” Electrochimica Acta 253(November):248–256. https://doi.org/10.1016/j.electacta.2017.09.053.
Chen, Z., B. Deng, K. Du, X. Mao, H. Zhu, W. Xiao, and D. Wang. 2017c. “Flue-Gas-Derived Sulfur-Doped Carbon with Enhanced Capacitance.” Advanced Sustainable Systems 1(6):1700047. https://doi.org/10.1002/adsu.201700047.
Colson, M., L. Alvarez, S.M. Soto, S.H. Joo, K. Li, A. Lupini, K. Nawaz, et al. 2022. “A Novel Sustainable Process for Multilayer Graphene Synthesis Using CO2 from Ambient Air.” Materials 15(17):5894. https://doi.org/10.3390/ma15175894.
Deng, B., X. Mao, W. Xiao, and D. Wang. 2017. “Microbubble Effect-Assisted Electrolytic Synthesis of Hollow Carbon Spheres from CO2.” Journal of Materials Chemistry A 5(25):12822–12827.
Deng, B., J. Tang, M. Gao, X. Mao, H. Zhu, W. Xiao, and D. Wang. 2018. “Electrolytic Synthesis of Carbon from the Captured CO2 in Molten LiCl–KCl–CaCO3: Critical Roles of Electrode Potential and Temperature for Hollow Structure and Lithium Storage Performance.” Electrochimica Acta 259(January):975–985. https://doi.org/10.1016/j.electacta.2017.11.025.
Douglas, A., R. Carter, N. Muralidharan, L. Oakes, and C.L. Pint. 2017a. “Iron Catalyzed Growth of Crystalline Multi-Walled Carbon Nanotubes from Ambient Carbon Dioxide Mediated by Molten Carbonates.” Carbon 116(May):572–578. https://doi.org/10.1016/j.carbon.2017.02.032.
Douglas, A., N. Muralidharan, R. Carter, and C.L. Pint. 2017b. “Sustainable Capture and Conversion of Carbon Dioxide into Valuable Multiwalled Carbon Nanotubes Using Metal Scrap Materials.” ACS Sustainable Chemistry & Engineering 5(8):7104–7110. https://doi.org/10.1021/acssuschemeng.7b01314.
Douglas, A., R. Carter, M. Li, and C.L. Pint. 2018. “Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening.” ACS Applied Materials & Interfaces 10(22):19010–19018.
Driscoll, J.A. 1978. “A Demonstration of Burning Magnesium and Dry Ice.” Journal of Chemical Education 55(7):450.
Duan, Y.Q., T. Du, X.W. Wang, F.S. Cai, and Z.H. Yuan. 2013. “Photoassisted CO2 Conversion to Carbon by Reduced NiFe2O4.” Advanced Materials Research 726–731:420–424. https://doi.org/10.4028/www.scientific.net/AMR.726-731.420.
Ehrensberger, K., R. Palumbo, C. Larson, and A. Steinfeld. 1997. “Production of Carbon from Carbon Dioxide with Iron Oxides and High-Temperature Solar Energy.” Industrial & Engineering Chemistry Research 36(3):645–648. https://doi.org/10.1021/ie950780y.
Esrafilzadeh, D., A. Zavabeti, R. Jalili, P. Atkin, J. Choi, B.J. Carey, R. Brkljača, et al. 2019. “Room Temperature CO2 Reduction to Solid Carbon Species on Liquid Metals Featuring Atomically Thin Ceria Interfaces.” Nature Communications 10(1):865. https://doi.org/10.1038/s41467-019-08824-8.
Fu, M.S., L.S. Chen, and S.Y. Chen. 2005. “Preparation, Structure of Doped Ferrite and Its Performance of Decomposition of Carbon Dioxide to Carbon.” Chemical Journal of Chinese Universities-Chinese 26(12):2279–2283.
Fu, M., L. Chen, J. Li, and S. Chen. 2007. “Effect of Reduction Condition on Structure Stability of NiFe2O4–δ and Its Catalytic Performance of CO2 Decomposition.” Journal of Fuel Chemistry and Technology 35(4):431–435. https://doi.org/10.1016/S1872-5813(07)60027-9.
Gálvez, M.E., P.G. Loutzenhiser, I. Hischier, and A. Steinfeld. 2008. “CO 2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions: Thermodynamic Analysis.” Energy & Fuels 22(5):3544–3550. https://doi.org/10.1021/ef800230b.
Gong, P., C. Tang, B. Wang, T. Xiao, H. Zhu, Q. Li, and Z. Sun. 2022. “Precise CO2 Reduction for Bilayer Graphene.” ACS Central Science 8(3):394–401. https://doi.org/10.1021/acscentsci.1c01578.
Guo, H., B. Kang, and A. Manivannan. 2013. “Carbon Dioxide Decomposition and Oxygen Generation Via SOEC.” ECS Transactions 50(49):129
Hu, J., Z. Guo, W. Chu, L. Li, and T. Lin. 2015. “Carbon Dioxide Catalytic Conversion to Nano Carbon Material on the Iron–Nickel Catalysts Using CVD-IP Method.” Journal of Energy Chemistry 24(5):620–625. https://doi.org/10.1016/j.jechem.2015.09.006.
Hu, L., Y. Song, S. Jiao, Y. Liu, J. Ge, H. Jiao, J. Zhu, J. Wang, H. Zhu, and D.J. Fray. 2016. “Direct Conversion of Greenhouse Gas CO2 into Graphene via Molten Salts Electrolysis.” ChemSusChem 9(6):588–594.
Hu, L., Y. Song, J. Ge, J. Zhu, Z. Han, and S. Jiao. 2017. “Electrochemical Deposition of Carbon Nanotubes from CO2 in CaCl2–NaCl-Based Melts.” Journal of Materials Chemistry A 5(13):6219–6225. https://doi.org/10.1039/C7TA00258K.
Hu, L., Z. Yang, W. Yang, M. Hu, and S. Jiao. 2019. “The Synthesis of Sulfur-Doped Graphite Nanostructures by Direct Electrochemical Conversion of CO2 in CaCl2NaCl CaO Li2SO4.” Carbon 144(April):805–814. https://doi.org/10.1016/j.carbon.2018.12.049.
Hwang, C.-S., and N.-C. Wang. 2004. “Preparation and Characteristics of Ferrite Catalysts for Reduction of CO2.” Materials Chemistry and Physics 88(2–3):258–263.
Irfan, M., K. Zuraiqi, C.K. Nguyen, T.C. Le, F. Jabbar, M. Ameen, C.J. Parker, et al. 2023. “Liquid Metal-Based Catalysts for the Electroreduction of Carbon Dioxide into Solid Carbon.” Journal of Materials Chemistry A 11(27):14990–14996. https://doi.org/10.1039/D3TA01379K.
Ishihara, T., T. Fujita, Y. Mizuhara, and Y. Takita. 1991. “Fixation of Carbon Dioxide to Carbon by Catalytic Reduction Over Metal Oxides.” Chemistry Letters 20(12):2237–2240. https://doi.org/10.1246/cl.1991.2237.
Jiaowen, S., D.W. Kim, S.B. Kim, and Y.M. Jo. 2016. “CO2 Decomposition Using Metal Ferrites Prepared by Co-Precipitation Method.” Korean Journal of Chemical Engineering 33(11):3162–3168. https://doi.org/10.1007/s11814-016-0192-5.
Jo, C., Y. Mun, J. Lee, E. Lim, S. Kim, and J. Lee. 2019. “Carbon Dioxide to Solid Carbon at the Surface of Iron Nanoparticle: Hollow Nanocarbons for Sodium Ion Battery Anode Application.” Journal of CO2Utilization 34:588–595.
Johnson, M., J. Ren, M. Lefler, G. Licht, J. Vicini, X. Liu, and S. Licht. 2017a. “Carbon Nanotube Wools Made Directly from CO2 by Molten Electrolysis: Value Driven Pathways to Carbon Dioxide Greenhouse Gas Mitigation.” Materials Today Energy 5(September):230–236. https://doi.org/10.1016/j.mtener.2017.07.003.
Johnson, M., J. Ren, M. Lefler, G. Licht, J. Vicini, and S. Licht. 2017b. “Data on SEM, TEM and Raman Spectra of Doped, and Wool Carbon Nanotubes Made Directly from CO2 by Molten Electrolysis.” Data in Brief 14(October):592–606. https://doi.org/10.1016/j.dib.2017.08.013.
Kato, H., T. Kodama, M. Tsuji, Y. Tamaura, and S.G. Chang. 1994. “Decomposition of Carbon Dioxide to Carbon by Hydrogen-Reduced Ni(II)-Bearing Ferrite.” Journal of Materials Science 29(21):5689–5692. https://doi.org/10.1007/BF00349965.
Khedr, M.H., A.A. Omar, and S.A. Abdel-Moaty. 2006. “Reduction of Carbon Dioxide into Carbon by Freshly Reduced CoFe2O4 Nanoparticles.” Materials Science and Engineering: A 1–2:26–33.
Khedr, M.H., M. Bahgat, M.I. Nasr, and E.K. Sedeek. 2007. “CO2 Decomposition Over Freshly Reduced Nanocrystalline Fe2O3.” Colloids and Surfaces A: Physicochemical and Engineering Aspects 302(1):517–524. https://doi.org/10.1016/j.colsurfa.2007.03.024.
Kim, J.-S., and J.-R. Ahn. 2001. “Characterization of Wet Processed (Ni, Zn)-Ferrites for CO2 Decomposition.” Journal of Materials Science 36:4813–4816.
Kim, J.-S., J.-R. Ahn, C.W. Lee, Y. Murakami, and D. Shindo. 2001. “Morphological Properties of Ultra-Fine (Ni, Zn)-Ferrites and Their Ability to Decompose CO2.” Journal of Materials Chemistry 11(12):3373–3376.
Kim, S.-H., J.T. Jang, J. Sim, J.-H. Lee, S.-C. Nam, and C.Y. Park. 2019. “Carbon Dioxide Decomposition Using SrFeCo0.5Ox, a Nonperovskite-Type Metal Oxide.” Journal of CO2Utilization 34:709–715.
Kim, G.M., W.Y. Choi, J.H. Park, S.J. Jeong, J.-E. Hong, W. Jung, and J.W. Lee. 2020a. “Electrically Conductive Oxidation-Resistant Boron-Coated Carbon Nanotubes Derived from Atmospheric CO2 for Use at High Temperature.” ACS Applied Nano Materials 3(9):8592–8597. https://doi.org/10.1021/acsanm.0c01909.
Kim, G.M., W.-G. Lim, D. Kang, J.H. Park, H. Lee, J. Lee, and J.W. Lee. 2020b. “Transformation of Carbon Dioxide into Carbon Nanotubes for Enhanced Ion Transport and Energy Storage.” Nanoscale 12(14):7822–7833. https://doi.org/10.1039/C9NR10552B.
Kodama, T., K. Tominaga, M. Tabata, T. Yoshida, and Y. Tamaura. 1992. “Decomposition of Carbon Dioxide to Carbon with Active Wustite at 300°C.” Journal of the American Ceramic Society 75(5):1287–1289. https://doi.org/10.1111/j.1151-2916.1992.tb05574.x.
Kodama, T., T. Sano, S.-G. Chang, M. Tsuji, and Y. Tamaura. 1994a. “Decomposition of O2 to Carbon by H2-Activated Ni(II)- and Co(II)-Bearing Ferrites At 300°C.” MRS Online Proceedings Library 344(1):63–68. https://doi.org/10.1557/PROC-344-63.
Kodama, T., H. Kato, S. G. Chang, N. Hasegawa, M. Tsuji, and Y. Tamaura. 1994b. “Decomposition of CO2 to Carbon by H2-Reduced Ni(II)- and Co(II)-Bearing Ferrites at 300°C.” Journal of Materials Research 9(2):462–467. https://doi.org/10.1557/JMR.1994.0462.
Kodama, T., M. Tabata, T. Sano, M. Tsuji, and Y. Tamaura. 1995a. “XRD and Mössbauer Studies on Oxygen-Deficient Ni(II)Bearing Ferrite with a High Reactivity for CO2 Decomposition to Carbon.” Journal of Solid State Chemistry 120(1):64–69. https://doi.org/10.1006/jssc.1995.1377.
Kodama, T., Y. Wada, T. Yamamoto, M. Tsuji, and Y. Tamaura. 1995b. “CO2 Decomposition to Carbon by Ultrafine Ni(II)Bearing Ferrite at 300°C.” Materials Research Bulletin 30(8):1039–1048. https://doi.org/10.1016/0025-5408(95)00077-1.
Kodama, T., T. Sano, T. Yoshida, M. Tsuji, and Y. Tamaura. 1995c. “CO2 Decomposition to Carbon with Ferrite-Derived Metallic Phase at 300°C.” Carbon 33(10):1443–1447. https://doi.org/10.1016/0008-6223(95)00094-T.
Komarneni, S., M. Tsuji, Y. Wada, and Y. Tamaura. 1997. “Nanophase Ferrites for CO2 Greenhouse Gas Decomposition.” Journal of Materials Chemistry 7(12):2339–2340.
Lau, J., G. Dey, and S. Licht. 2016. “Thermodynamic Assessment of CO2 to Carbon Nanofiber Transformation for Carbon Sequestration in a Combined Cycle Gas or a Coal Power Plant.” Energy Conversion and Management 122:400–410.
Li, S., Z. He, Y. Zheng, and C. Chen. 2015. “Absorption and Decomposition of CO2 by Active Ferrites Prepared by Atmospheric Plasma Spraying.” Journal of Thermal Spray Technology 24(8):1574–1578. https://doi.org/10.1007/s11666-015-0333-0.
Li, X., H. Shi, X. Wang, X. Hu, C. Xu, and W. Shao. 2022. “Direct Synthesis and Modification of Graphene in Mg Melt by Converting CO2: A Novel Route to Achieve High Strength and Stiffness in Graphene/Mg Composites.” Carbon 186:632–643.
Li, X., X. Wang, X. Hu, C. Xu, W. Shao, and K. Wu. 2023. “Direct Conversion of CO2 to Graphene via Vapor–Liquid Reaction for Magnesium Matrix Composites with Structural and Functional Properties.” Journal of Magnesium and Alloys 11(4):1206–1212.
Li, Z., D. Yuan, H. Wu, W. Li, and D. Gu. 2018. “A Novel Route to Synthesize Carbon Spheres and Carbon Nanotubes from Carbon Dioxide in a Molten Carbonate Electrolyzer.” Inorganic Chemistry Frontiers 5(1):208–216.
Li, Z., G. Wang, W. Zhang, Z. Qiao, and H. Wu. 2019. “Carbon Nanotubes Synthesis from CO2 Based on the Molten Salts Electrochemistry: Effect of Alkaline Earth Carbonate Additives on the Diameter of the Carbon Nanotubes.” Journal of the Electrochemical Society 166(10):D415. https://doi.org/10.1149/2.0861910jes.
Liang, C., L. Pan, S. Liang, Y. Xia, Z. Liang, Y. Gan, H. Huang, J. Zhang, and W. Zhang. 2019. “Ultraefficient Conversion of CO 2 into Morphology-Controlled Nanocarbons: A Sustainable Strategy Toward Greenhouse Gas Utilization.” Small 15(33):1902249. https://doi.org/10.1002/smll.201902249.
Licht, S. 2017a. “Co-production of Cement and Carbon Nanotubes with a Carbon Negative Footprint.” Journal of CO2Utilization 18:378–389.
Licht, S. 2017b. “Carbon Dioxide to Carbon Nanotube Scale-Up.” arXiv preprint arXiv:1710.07246.
Licht, S., A. Douglas, J. Ren, R. Carter, M. Lefler, and C.L. Pint. 2016. “Carbon Nanotubes Produced from Ambient Carbon Dioxide for Environmentally Sustainable Lithium-Ion and Sodium-Ion Battery Anodes.” ACS Central Science 2(3):162–168.
Licht, S., X. Liu, G. Licht, X. Wang, A. Swesi, and Y. Chan. 2019. “Amplified CO2 Reduction of Greenhouse Gas Emissions with C2CNT Carbon Nanotube Composites.” Materials Today Sustainability 6:100023. https://doi.org/10.1016/j.mtsust.2019.100023.
Lin, K.-S., A.K. Adhikari, Z.-Y. Tsai, Y.-P. Chen, T.-T. Chien, and H.-B. Tsai. 2011. “Synthesis and Characterization of Nickel Ferrite Nanocatalysts for CO2 Decomposition.” Catalysis Today 174(1):88–96.
Lin, K.-S., A.K. Adhikari, C.-Y. Wang, P.-J. Hsu, and H.Y. Chan. 2013. “Synthesis and Characterization of Nickel and Zinc Ferrite Nanocatalysts for Decomposition of CO2 Greenhouse Effect Gas.” Journal of Nanoscience and Nanotechnology 13(4):2538–2548. https://doi.org/10.1166/jnn.2013.7427.
Lin, K.-S., C.-Y. Tang, N.V. Mdlovu, C.J. Chang, C.-L. Chiang, and Z.-M. Cai. 2022. “Preparation and Characterization of Ni/Al2O3 for Carbon Nanofiber Fabrication from CO2 Hydrogenation.” Catalysis Today, 4th International Conference on Catalysis and Chemical Engineering 388–389(April):341–350. https://doi.org/10.1016/j.cattod.2020.06.008.
Linshen, C., C. Songying, and L. Guanglie. 2006. “Study the Structure Stability of NiFe 2−x Crx O4 (x= 0, 0.08) During H2/CO2 Cycle Reaction.” Journal of Materials Science 41:6465–6469.
Liu, X., J. Ren, G. Licht, X. Wang, and S. Licht. 2019. “Carbon Nano-Onions Made Directly from CO2 by Molten Electrolysis for Greenhouse Gas Mitigation.” Advanced Sustainable Systems 3(10):1900056. https://doi.org/10.1002/adsu.201900056.
Liu, X., X. Wang, G. Licht, and S. Licht. 2020. “Transformation of the Greenhouse Gas Carbon Dioxide to Graphene.” Journal of CO2Utilization 36:288–294.
Liu, X., G. Licht, and S. Licht. 2021. “The Green Synthesis of Exceptional Braided, Helical Carbon Nanotubes and Nanospiral Platelets Made Directly from CO2.” Materials Today Chemistry 22:100529.
Liu, X., G. Licht, X. Wang, and S. Licht. 2022. “Controlled Transition Metal Nucleated Growth of Carbon Nanotubes by Molten Electrolysis of CO2.” Catalysts 12(2):137. https://doi.org/10.3390/catal12020137.
Lou, Z., Q. Chen, W. Wang, and Y. Zhang. 2003. “Synthesis of Carbon Nanotubes by Reduction of Carbon Dioxide with Metallic Lithium.” Carbon 41(15):3063–3067. https://doi.org/10.1016/S0008-6223(03)00335-X.
Lou, Z., C. Chen, H. Huang, and D. Zhao. 2006. “Fabrication of Y-Junction Carbon Nanotubes by Reduction of Carbon Dioxide with Sodium Borohydride.” Diamond and Related Materials 15(10):1540–1543. https://doi.org/10.1016/j.diamond.2005.12.044.
Luchetta, C., E.C. Oliveira Munsignatti, and H.O. Pastore. 2021. “CO2 Metallothermal Reduction to Graphene: The Influence of Zn.” Frontiers in Chemical Engineering 3(August):707855. https://doi.org/10.3389/fceng.2021.707855.
Luo, B., H. Liu, L. Jiang, L. Jiang, D. Geng, B. Wu, W. Hu, Y. Liu, and G. Yu. 2013. “Synthesis and Morphology Transformation of Single-Crystal Graphene Domains Based on Activated Carbon Dioxide by Chemical Vapor Deposition.” Journal of Materials Chemistry C 1(17):2990–2995. https://doi.org/10.1039/C3TC30124A.
Ma, L.J., L.S. Chen, and S.Y. Chen. 2007a. “Study on the Cycle Decomposition of CO2 Over NiCr0. 08Fe1. 92O4 and the Microstructure of Products.” Materials Chemistry and Physics 105(1):122–126.
Ma, L.J., L.S. Chen, and S.Y. Chen. 2007b. “Study of the CO2 Decomposition Over Doped Ni-Ferrites.” Journal of Physics and Chemistry of Solids 68(7):1330–1335.
Ma, L.J., L.S. Chen, and S.Y. Chen. 2009a. “Studies on Redox H2–CO2 Cycle on CoCrxFe2–xO4.” Solid State Sciences 11(1):176–181. https://doi.org/10.1016/j.solidstatesciences.2008.05.008.
Ma, L.J., L.S. Chen, and S.Y. Chen. 2009b. “Study on the Characteristics and Activity of Ni–Cu–Zn Ferrite for Decomposition of CO2.” Materials Chemistry and Physics 114(2–3):692–696.
Ma, L.J., R. Wu, H. Liu, W. Xu, L.S. Chen, and S.Y. Chen. 2011. “Studies on CO2 Decomposition Over H2-Reduced MFe2O4 (M = Ni, Cu, Co, Zn).” Solid State Sciences 13(12):2172–2176. https://doi.org/10.1016/j.solidstatesciences.2011.10.003.
Moghaddam, M.B., E.K. Goharshadi, M.H. Entezari, and P. Nancarrow. 2013. “Preparation, Characterization, and Rheological Properties of Graphene–Glycerol Nanofluids.” Chemical Engineering Journal 231(September):365–372. https://doi.org/10.1016/j.cej.2013.07.006.
Molina-Jirón, C., M.R. Chellali, C.N.S. Kumar, C. Kübel, L. Velasco, H. Hahn, E. Moreno–Pineda, and M. Ruben. 2019. “Direct Conversion of CO2 to Multi-Layer Graphene Using Cu–Pd Alloys.” ChemSusChem 12(15):3509–3514. https://doi.org/10.1002/cssc.201901404.
Motiei, M., Y. Rosenfeld Hacohen, J. Calderon–Moreno, and A. Gedanken. 2001. “Preparing Carbon Nanotubes and Nested Fullerenes from Supercritical CO2 by a Chemical Reaction.” Journal of the American Chemical Society 123(35):8624–8625. https://doi.org/10.1021/ja015859a.
Moyer, K., M. Zohair, J. Eaves-Rathert, A. Douglas, and C.L. Pint. 2020. “Oxygen Evolution Activity Limits the Nucleation and Catalytic Growth of Carbon Nanotubes from Carbon Dioxide Electrolysis via Molten Carbonates.” Carbon 165:90–99.
Mulmi, S., H. Chen, A. Hassan, J.F. Marco, F.J. Berry, F. Sharif, P.R. Slater, E.P.L. Roberts, S. Adams, and V. Thangadurai. 2017. “Thermochemical CO2 Splitting Using Double Perovskite-Type Ba2Ca0.66Nb1.34-xFexO6-δ.” Journal of Materials Chemistry A 5(15):6874–6883. https://doi.org/10.1039/C6TA10285A.
Nakabayashi, K., Y. Matsuo, K. Isomoto, K. Teshima, T. Ayukawa, H. Shimanoe, T. Mashio, I. Mochida, J. Miyawaki, and S.-H. Yoon. 2020. “Establishment of Innovative Carbon Nanofiber Synthesis Technology Utilizing Carbon Dioxide.” ACS Sustainable Chemistry & Engineering 8(9):3844–3852. https://doi.org/10.1021/acssuschemeng.9b07253.
Nganglumpoon, R., S. Watmanee, T. Teerawatananond, P. Pinthong, K. Poolboon, N. Hongrutai, D.N. Tungasmita, et al. 2022. “Growing 3D-Nanostructured Carbon Allotropes from CO2 at Room Temperature Under the Dynamic CO2 Electrochemical Reduction Environment.” Carbon 187(February):241–255. https://doi.org/10.1016/j.carbon.2021.11.011.
Otake, K., H. Kinoshita, T. Kikuchi, and R.O. Suzuki. 2013. “CO2 Gas Decomposition to Carbon by Electro-Reduction in Molten Salts.” Electrochimica Acta 100(June):293–299. https://doi.org/10.1016/j.electacta.2013.02.076.
Ozawa, S., H. Matsuno, A. Fujibayashi, T. Uchiyama, T. Wakamatsu, N. Sakaguchi, and R.O. Suzuki. 2016. “Influence of Gas Injection Pipe on CO2 Decomposition by CaCl2–CaO Molten Salt and ZrO2 Solid Electrolysis.” ISIJ International 56(11):2093–2099. https://doi.org/10.2355/isijinternational.ISIJINT-2016-179.
Pinthong, P., S. Phupaichitkun, S. Watmanee, R. Nganglumpoon, D.N. Tungasmita, S. Tungasmita, Y. Boonyongmaneerat, N. Promphet, N. Rodthongkum, and J. Panpranot. 2022. “Room Temperature Nanographene Production via CO2 Electrochemical Reduction on the Electrodeposited Bi on Sn Substrate.” Nanomaterials 12(19):3389. https://doi.org/10.3390/nano12193389.
Poh, H.L., Z. Sofer, J. Luxa, and M. Pumera. 2014. “Transition Metal-Depleted Graphenes for Electrochemical Applications via Reduction of CO2 by Lithium.” Small 10(8):1529–1535. https://doi.org/10.1002/smll.201303002.
Ren, J., and S. Licht. 2016. “Tracking Airborne CO2 Mitigation and Low Cost Transformation into Valuable Carbon Nanotubes.” Scientific Reports 6(1):27760. https://doi.org/10.1038/srep27760.
Ren, J., F.-F. Li, J. Lau, L. González-Urbina, and S. Licht. 2015a. “One-Pot Synthesis of Carbon Nanofibers from CO2.” Nano Letters 15(9):6142–6148.
Ren, J., J. Lau, M. Lefler, and S. Licht. 2015b. “The Minimum Electrolytic Energy Needed to Convert Carbon Dioxide to Carbon by Electrolysis in Carbonate Melts.” The Journal of Physical Chemistry C 119(41):23342–23349. https://doi.org/10.1021/acs.jpcc.5b07026.
Ren, J., M. Johnson, R. Singhal, and S. Licht. 2017. “Transformation of the Greenhouse Gas CO2 by Molten Electrolysis into a Wide Controlled Selection of Carbon Nanotubes.” Journal of CO2Utilization 18(March):335–344. https://doi.org/10.1016/j.jcou.2017.02.005.
Samiee, S., and E.K. Goharshadi. 2014. “Graphene Nanosheets as Efficient Adsorbent for an Azo Dye Removal: Kinetic and Thermodynamic Studies.” Journal of Nanoparticle Research 16:1–16.
Sano, T., H. Ono., H. Amano, M. Tsuji, and Y. Tamaura. 1998. “CO2 Decomposition with Ferrite for Utilizing Carbon as Solar H2 Energy Carrier-CO2 Decomposition Mechanism with Metal Substituted Ferrites.” Journal of the Magnetics Society of Japan 22(S1):423–424.
Seekaew, Y., N. Tammanoon, A. Tuantranont, T. Lomas, A. Wisitsoraat, and C. Wongchoosuk. 2022. “Conversion of Carbon Dioxide into Chemical Vapor Deposited Graphene with Controllable Number of Layers via Hydrogen Plasma Pre-Treatment.” Membranes 12(8):796. https://doi.org/10.3390/membranes12080796.
Sharma, D.K., and N. Bagotia. 2021. “Production of Graphene and Carbon Nanotubes Using Low Cost Carbon-Based Raw Materials and Their Utilization in the Production of Polycarbonate/Ethylene Methyl Acrylate-Based Nanocomposites.” Indian Journal of Engineering and Materials Sciences 27(6):1127–1135.
Shin, H.C., J.H. Oh, J.C. Lee, K.D. Jung, and S.C. Choi. 2004. “CO2 Decomposition with Nano-Size Ferrite Prepared by Irradiation of Ultrasonic Wave.” Journal of the Ceramic Society of Japan, Supplement 112-1 112(5):S1373.
Sim, J., S.-H. Kim, J.-Y. Kim, K. Bong Lee, S.-C. Nam, and C.Y. Park. 2020. “Enhanced Carbon Dioxide Decomposition Using Activated SrFeO3–δ.” Catalysts 10(11):1278.
Smith, K., R. Parrish, W. Wei, Y. Liu, T. Li, Y.H. Hu, and H. Xiong. 2016. “Disordered 3D Multi-Layer Graphene Anode Material from CO2 for Sodium-Ion Batteries.” ChemSusChem 9(12):1397–1402. https://doi.org/10.1002/cssc.201600117.
Strudwick, A.J., N.E. Weber, M.G. Schwab, M. Kettner, R.T. Weitz, J.R. Wünsch, K. Müllen, and H. Sachdev. 2015. “Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres.” ACS Nano 9(1):31–42.
Sun, Z., and Y.H. Hu. 2020. “3D Graphene Materials from the Reduction of CO2.” Accounts of Materials Research 2(1):48–58. https://doi.org/10.1021/accountsmr.0c00069.
Tabata, M., Y. Nishida, T. Kodama, K. Mimori, T. Yoshida, and Y. Tamaura. 1993a. “CO2 Decomposition with Oxygen-Deficient Mn(II) Ferrite.” Journal of Materials Science 28(4):971–974. https://doi.org/10.1007/BF00400881.
Tabata, M., K. Akanuma, K. Nishizawa, K. Mimori, T. Yoshida, M. Tsuji, and Y. Tamaura. 1993b. “Reactivity of Oxygen-Deficient Mn(II)-Bearing Ferrites (MnxFe3-xO4-δ, O≤x≤1, Δ>0) Toward CO2 Decomposition to Carbon.” Journal of Materials Science 28(24):6753–6760. https://doi.org/10.1007/BF00356427.
Tabata, M., K. Akanuma, T. Togawa, M. Tsuji, and Y. Tamaura. 1994a. “Mössbauer Study of Oxygen-Deficient ZnII-Bearing Ferrites (ZnxFe3–xO4–δ, 0 ≤x≤ 1) and Their Reactivity Toward CO2 Decomposition to Carbon.” Journal of the Chemical Society, Faraday Transactions 90(8):1171–1175. https://doi.org/10.1039/FT9949001171.
Tabata, M., H. Kato, M. Tsuji, and Y. Tamaura. 1994b. “Decomposition of CO2 to Carbon Using Oxygen-Deficient Zn(II)Bearing Ferrite.” MRS Proceedings 344:157. https://doi.org/10.1557/PROC-344-157.
Tamaura, Y., and K. Nishizawa. 1992. “CO2 Decomposition into C and Conversion into CH4 Using the H2-Reduced Magnetite.” Energy Conversion and Management 33(5–8):573–577. https://doi.org/10.1016/0196-8904(92)90058-5.
Tamaura, Y., and M. Tahata. 1990. “Complete Reduction of Carbon Dioxide to Carbon Using Cation-Excess Magnetite.” Nature 346(6281):255–256.
Thapaliya, B.P., A.S. Ivanov, H.-Y. Chao, M. Lamm, M. Chi, H.M. Meyer, X.-G. Sun, T. Aytug, S. Dai, and S.M. Mahurin. 2023. “Molten Salt Electrochemical Upcycling of CO2 to Graphite for High Performance Battery Anodes.” Carbon 212(August):118151. https://doi.org/10.1016/j.carbon.2023.118151.
Tomai, T., K. Katahira, H. Kubo, Y. Shimizu, T. Sasaki, N. Koshizaki, and K. Terashima. 2007. “Carbon Materials Syntheses Using Dielectric Barrier Discharge Microplasma in Supercritical Carbon Dioxide Environments.” Journal of Supercritical Fluids 41(3):404–411. https://doi.org/10.1016/j.supflu.2006.12.003.
Tsuji, M., K. Nishizawa, T. Yoshida, and Y. Tamaura. 1994. “Methanation Reactivity of Carbon Deposited Directly from CO2 on to the Oxygen-Deficient Magnetite.” Journal of Materials Science 29(20):5481–584. https://doi.org/10.1007/BF01171565.
Tsuji, M., Y. Wada, T. Yamamoto, T. Sano, and Y. Tamaura. 1996a. “CO 2 Decomposition by Metallic Phase on Oxygen-Deficient Ni (II)-Bearing Ferrite.” Journal of Materials Science Letters 15:156–158.
Tsuji, M., T. Kodama, T. Yoshida, Y. Kitayama, and Y. Tamaura. 1996b. “Preparation and CO2 Methanation Activity of an Ultrafine Ni (II) Ferrite Catalyst.” Journal of Catalysis 164(2):315–321.
Wada, Y., T. Yoshida, M. Tsuji, and Y. Tamaura. 1995. “CO2-Decomposition Capacity of H2-Reduced Ferrites.” Energy Conversion and Management, Proceedings of the Second International Conference on Carbon Dioxide Removal 36(6):641–644. https://doi.org/10.1016/0196-8904(95)00087-T.
Wang, C., F. Li, H. Qu, Y. Wang, X. Yi, Y. Qiu, Z. Zou, Y. Luo, and B. Yu. 2015. “Fabrication of Three Dimensional Carbon Nanotube Foam by Direct Conversion Carbon Dioxide and Its Application in Supercapacitor.” Electrochimica Acta 158(March):35–41. https://doi.org/10.1016/j.electacta.2015.01.112.
Wang, J.-F., K.-X. Wang, J.-Q. Wang, L. Li, and J.-S. Chen. 2012. “Decomposition of CO2 to Carbon and Oxygen Under Mild Conditions Over a Zinc-Modified Zeolite.” Chemical Communications 48(17):2325. https://doi.org/10.1039/c2cc17382d.
Wang, X., X. Liu, G. Licht, B. Wang, and S. Licht. 2019. “Exploration of Alkali Cation Variation on the Synthesis of Carbon Nanotubes by Electrolysis of CO2 in Molten Carbonates.” Journal of CO2Utilization 34(December):303–312. https://doi.org/10.1016/j.jcou.2019.07.007.
Wang, X., G. Licht, X. Liu, and S. Licht. 2020a. “One Pot Facile Transformation of CO2 to an Unusual 3-D Nano-Scaffold Morphology of Carbon.” Scientific Reports 10(1):21518. https://doi.org/10.1038/s41598-020-78258-6.
Wang, X., X. Liu, G. Licht, and S. Licht. 2020b. “Calcium Metaborate Induced Thin Walled Carbon Nanotube Syntheses from CO2 by Molten Carbonate Electrolysis.” Scientific Reports 10(1):15146.
Wang, L., J. Deng, J. Deng, Y. Fei, Y. Fang, and Y.H. Hu. 2020c. “Ultra-Fast and Ultra-Long-Life Li Ion Batteries with 3D Surface-Porous Graphene Anodes Synthesized from CO2.” Journal of Materials Chemistry A 8(26):13385–13392. https://doi.org/10.1039/D0TA03606D.
Wang, X., F. Sharif, X. Liu, G. Licht, M. Lefler, and S. Licht. 2020d. “Magnetic Carbon Nanotubes: Carbide Nucleated Electrochemical Growth of Ferromagnetic CNTs from CO2.” Journal of CO2Utilization 40. https://doi.org/10.1016/j.jcou.2020.101218.
Wang, X., G. Licht, and S. Licht. 2021a. “Green and Scalable Separation and Purification of Carbon Materials in Molten Salt by Efficient High-Temperature Press Filtration.” Separation and Purification Technology 255:117719.
Wang, Y., W. Wang, J. Xie, C.-H. Wang, Y.-W. Yang, and Y.-C. Lu. 2021b. “Electrochemical Reduction of CO2 in Ionic Liquid: Mechanistic Study of Li–CO2 Batteries via in Situ Ambient Pressure X-Ray Photoelectron Spectroscopy.” Nano Energy 83(May):105830. https://doi.org/10.1016/j.nanoen.2021.105830.
Wang, R., L. Sun, X. Zhu, W. Ge, H. Li, Z. Li, H. Zhang et al. 2023. “Carbon Nanotube-Based Strain Sensors: Structures, Fabrication, and Applications.” Advanced Materials Technologies 8(1):2200855.
Wang, J., Z. Su, Y. Zhang, and T. Jiang. 2024. “Synthesis, Characterization, and Catalytic Reduction CO2 Properties of Spinel Nano-MnXFe3-XO4: Effect of X on Mn3+/Mn2+ Cation Occupancies and CO2 Reduction Mechanism.” Chemical Engineering Journal 479(January):147926. https://doi.org/10.1016/j.cej.2023.147926.
Watanabe, T., and T. Ohba. 2021. “Low-Temperature CO2 Thermal Reduction to Graphitic and Diamond-Like Carbons Using Perovskite-Type Titanium Nanoceramics by Quasi-High-Pressure Reactions.” ACS Sustainable Chemistry & Engineering 9.10:3860–3873.
Watmanee, S., R. Nganglumpoon, N. Hongrutai, P. Pinthong, P. Praserthdam, S. Wannapaiboon, P.Á. Szilágyi, Y. Morikawa, and J. Panpranot. 2022. “Formation and Growth Characteristics of Nanostructured Carbon Films on Nascent Ag Clusters During Room-Temperature Electrochemical CO2 Reduction.” Nanoscale Advances 4(10):2255–2267. https://doi.org/10.1039/D1NA00876E.
Watmanee, S., T. Klinaubol, R. Nganglumpoon, P. Pinthong, A. Christian Serraon, M. R. Chiong III, Y. Morikawa, and J. Panpranot. 2024. “Origin of Surface-Bonded Oxygen on Dendritic Ag Particles Towards 3D-Nanocrystalline Carbon Formation During CO2 Electrochemical Reduction Reaction.” Chemical Engineering Journal 480(January):148182. https://doi.org/10.1016/j.cej.2023.148182.
Wei, W., K. Sun, and Y.H. Hu. 2016. “Direct Conversion of CO 2 to 3D Graphene and Its Excellent Performance for Dye-Sensitized Solar Cells with 10% Efficiency.” Journal of Materials Chemistry A 4(31):12054–12057.
Wei, W., K. Sun, and Y.H. Hu. 2017a. “Synthesis of Mesochannel Carbon Nanowall Material from CO2 and Its Excellent Performance for Perovskite Solar Cells.” Industrial & Engineering Chemistry Research 56.7:1803–1809.
Wei, W., D.J. Stacchiola, and Y.H. Hu. 2017b. “3D Graphene from CO2 and K as an Excellent Counter Electrode for Dye-Sensitized Solar Cells.” International Journal of Energy Research 41.15:2502–2508.
Wei, W., B. Hu, F. Jin, Z. Jing, Y. Li, A.A. García Blanco, D.J. Stacchiola, and Y.H. Hu. 2017c. “Potassium-Chemical Synthesis of 3D Graphene from CO2 and Its Excellent Performance in HTM-Free Perovskite Solar Cells.” Journal of Materials Chemistry A 5(17):7749–7752. https://doi.org/10.1039/C7TA01768E.
Wei, S., H. Shi, X. Li, X. Hu, C. Xu, and X. Wang. 2022. “A Green and Efficient Method for Preparing Graphene Using CO2@ Mg in-Situ Reaction and Its Application in High-Performance Lithium-Ion Batteries.” Journal of Alloys and Compounds 902:163700.
Wu, H., Z. Li, D. Ji, Y. Liu, L. Li, D. Yuan, Z. Zhang, et al. 2016. “One-Pot Synthesis of Nanostructured Carbon Materials from Carbon Dioxide via Electrolysis in Molten Carbonate Salts.” Carbon 106(September):208–217. https://doi.org/10.1016/j.carbon.2016.05.031.
Xie, Z., E. Huang, S. Garg, S. Hwang, P. Liu, and J.G. Chen. 2024. “CO2 Fixation into Carbon Nanofibres Using Electrochemical–Thermochemical Tandem Catalysis.” Nature Catalysis 7(1):98–109. https://doi.org/10.1038/s41929-023-01085-1.
Xing, Z., B. Wang, W. Gao, C. Pan, J.K. Halsted, E.S. Chong, J. Lu, et al. 2015. “Reducing CO2 to Dense Nanoporous Graphene by Mg/Zn for High Power Electrochemical Capacitors.” Nano Energy 11(January):600–610. https://doi.org/10.1016/j.nanoen.2014.11.011.
Xu, X., and S. Huang. 2007. “Carbon Dioxide as a Carbon Source for Synthesis of Carbon Nanotubes by Chemical Vapor Deposition.” Materials Letters 61(21):4235–4237.
Yamasue, E., H. Yamaguchi, H. Nakaoku, H. Okumura, and K.N. Ishihara. 2007a. “Carbon Dioxide Reduction into Carbon by Mechanically Milled Wustite.” Journal of Materials Science 42(13):5196–5202. https://doi.org/10.1007/s10853-006-0458-0.
Yamasue, E., H. Yamaguchi, H. Okumura, and K.N. Ishihara. 2007b. “Decomposition of Carbon Dioxide Using Mechanically-Milled Magnetite.” Journal of Alloys and Compounds, Proceedings of the 12th International Symposium on Metastable and Nano-Materials (ISMANAM-2005) 434–435(May):803–805. https://doi.org/10.1016/j.jallcom.2006.08.197.
Yap, D., J.-M. Tatibouët, and C. Batiot-Dupeyrat. 2015. “Carbon Dioxide Dissociation to Carbon Monoxide by Non-Thermal Plasma.” Journal of CO2Utilization 12:54–61.
Ye, L., N. Syed, D. Wang, J. Guo, J. Yang, J. Buston, R. Singh, M.S. Alivand, G.K. Li, and A. Zavabeti. 2023. “Low-Temperature CO2 Reduction Using Mg–Ga Liquid Metal Interface.” Advanced Materials Interfaces 10(3):2201625. https://doi.org/10.1002/admi.202201625.
Yoshida, T., M. Tsuji, Y. Tamaura, T. Hurue, T. Hayashida, and K. Ogawa. 1997. “Carbon Recycling System Through Methanation of CO2 in Flue Gas in LNG Power Plant.” Energy Conversion and Management 38:S443–S448.
Zhang, C.L., T.-H. Wu, H.-M. Yang, Y.-Z. Jiang, and S.-Y. Peng. 1995. “Reduction of Carbon-Dioxide to Carbon with Active Cation Excess Magnetite.” Chemical Journal of Chinese Universities-Chinese 16(6):955–957.
Zhang, C.L., Z. Liu, T.-H. Wu, H.-M. Yang, Y.-Z. Jiang, and S.-Y. Peng. 1996. “Complete Reduction of Carbon Dioxide to Carbon and Indirect Conversion to O2 Using Cation-Excess Magnetite.” Materials Chemistry and Physics 44(2):194–198. https://doi.org/10.1016/0254-0584(95)01652-B.
Zhang, C.-L., S. Li, T.-H. Wu, and S.-Y. Peng. 1999. “Reduction of Carbon Dioxide into Carbon by the Active Wustite and the Mechanism of the Reaction.” Materials Chemistry and Physics 58(2):139–145. https://doi.org/10.1016/S0254-0584(98)00267-3.
Zhang, C., S. Li, L. Wang, T. Wu, and S. Peng. 2000a. “Studies on the Decomposition of Carbon Dioxide into Carbon with Oxygen-Deficient Magnetite.” Materials Chemistry and Physics 62(1):44–51. https://doi.org/10.1016/S0254-0584(99)00169-8.
Zhang, C., S. Li, L. Wang, T. Wu, and S. Peng. 2000b. “Studies on the Decomposing Carbon Dioxide into Carbon with Oxygen-Deficient Magnetite: II. The Effects of Properties of Magnetite on Activity of Decomposition CO2 and Mechanism of the Reaction.” Materials Chemistry and Physics 62(1):52–61. https://doi.org/10.1016/S0254-0584(99)00168-6.
Zhang, J., T. Tian, Y. Chen, Y. Niu, J. Tang, and L.-C. Qin. 2014. “Synthesis of Graphene from Dry Ice in Flames and Its Application in Supercapacitors.” Chemical Physics Letters 591:78–81.
Zuraiqi, K., A. Zavabeti, J. Clarke-Hannaford, B.J. Murdoch, K. Shah, M.J.S. Spencer, C.F. McConville, T. Daeneke, and K. Chiang. 2022. “Direct Conversion of CO2 to Solid Carbon by Ga-Based Liquid Metals.” Energy & Environmental Science 15(2):595–600.