
The Fire and Smoke Model Evaluation Experiment

NASEM Briefing
12 August 2025

Tim Brown, Desert Research Institute
Adam Watts, US Forest Service Pacific Wildland Fire Science Lab
(and the many contributors to FASMEE)

Factors influencing smoke production

-Considerable uncertainty remains

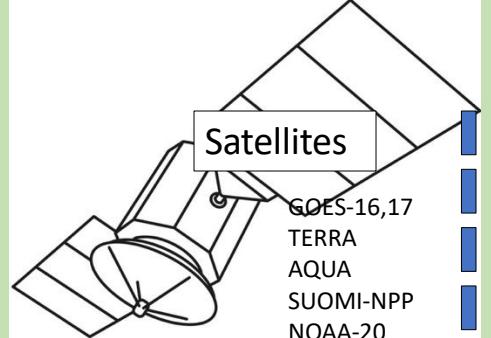
-Uncertainty presents a major challenge to prescribed burning

From NWCG Rx410, Smoke Management Techniques

Context: controls & uncertainty

Combustion and Consumption is Affected by Fuel

Loading
Size
Arrangement
Continuity
Fuel Moisture



From NWCG Rx410, Smoke Management Techniques

Selected modeling systems that describe fire & smoke

Model	Description	Applications	FASMEE Datasets	References
MesoNH/ ForeFire	Mesoscale non-hydrostatic model coupled with a surface atmospheric interaction model (SURFEX).	Desktop (unix)	Meteorology and plume dynamics	[5]
Vesta	Large-scale, cell-based wildland fire simulator developed within the Fire Paradox project.	Desktop	Gridded fire behavior and fire radiative energy observations.	[11]
WFDS	Wildland-Urban-Interface Fire Dynamics Simulator: computational fluid dynamics model that resolves buoyant flow, heat transfer, combustion, and thermal fuel degradation.	Desktop (unix) STANDFIRE (under development)	Fuel consumption, gridded fire behavior and radiative energy, meteorology and plume dynamics.	[10]
WRF-SFIRE (Spread FIRE model)	Weather Research and Forecasting—Spread Fire: combined atmosphere and fire spread model.	High performance computing cluster	Gridded fire behavior, meteorology and plume dynamics.	[3,4]

Temporal Allocation of Emissions

GOES
WRAP
CMAQ
FEPS

Vertical Allocation of Emissions

Briggs
Frijtas
Sofiev

Emission Factors

FEPS
SERA

Literature (Urbanski, Yokelson etc)

Fuel Consumption

CONSUME
FOFEM
FEPS

Fuel Characteristics

FCCS
FCCS-LF
NFDRS

Fire Activity and Burned Area

GOES, VIIRS, MODIS
Fire Info System (FIS)
IRWIN
Rx Systems
Manual

BlueSky Pipeline: Smoke Modeling Components

SMOKE EMISSIONS REFERENCE APPLICATION (SERA)

Emission Factors by Pollutant | Smoke Emissions References | Change Log

Filter summaries by:

Combustion Phase	Burn Type	Platform*	Region	Vegetation Type	EPA Pollutant Category	Slash
<input type="checkbox"/> Flaming	<input type="checkbox"/> Broadcast Rx (Field)	<input type="checkbox"/> Aerostat	<input type="checkbox"/> North	<input type="checkbox"/> Conifer forest	<input type="checkbox"/> Air Toxin (TOX)	<input type="checkbox"/> Include outliers
<input type="checkbox"/> Residual smoldering	<input type="checkbox"/> Other (Lab)	<input type="checkbox"/> Airborne	<input type="checkbox"/> Southeast	<input type="checkbox"/> Grassland	<input type="checkbox"/> Criteria Air Pollutant (CAP)	<input checked="" type="radio"/> Exclude (default)
<input type="checkbox"/> Smoldering	<input type="checkbox"/> Pile burn (Field)	<input type="checkbox"/> Ground	<input type="checkbox"/> West	<input type="checkbox"/> Hardwood forest	<input type="checkbox"/> Greenhouse Gas (GHG)	<input type="radio"/> Include
<input type="checkbox"/> Unspecified	<input type="checkbox"/> Pile burn (Lab)	<input type="checkbox"/> Wildfire (Field)		<input type="checkbox"/> Mixedwood forest	<input type="checkbox"/> Hazardous Air Pollutant (HAP)	<input type="radio"/> Slash-only
<input type="checkbox"/> Unspecified				<input type="checkbox"/> Organic soil	<input type="checkbox"/> Ozone Depleting Substance (OZD)	
				<input type="checkbox"/> Other	<input type="checkbox"/> Ozone Precursor (OZP)	
				<input type="checkbox"/> Shrubland	<input type="checkbox"/> Persistent Bioaccumulative Toxic (PBT)	

Use checkboxes in the table below to further limit output to selected pollutants.

Apply filter | Reset

*Platform applies only to field burns (i.e., broadcast Rx, pile burn, or wildfire). Lab burn + platform will yield 0 records.

Download this summary table | Download source EFs for this summary table

Emission Factor Summaries: Showing all 490 pollutants, across all categories (excluding outliers and slash)

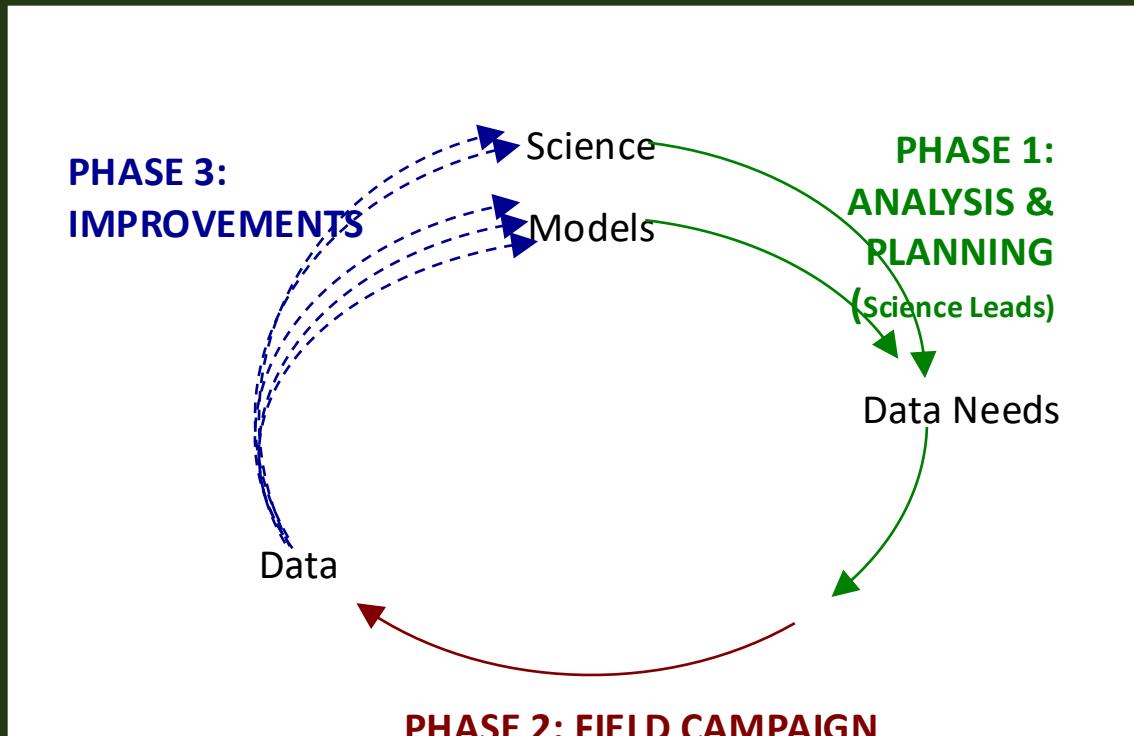
Pollutant	Formula	Pollutant Category	Count	EF (g/kg) Mean	EF (g/kg) SD	EF (g/kg) Min	EF (g/kg) Max	MCE (0-1) Mean	MCE (0-1) SD
ammonia	NH ₃	inorganic gases	262	1.407	1.340	-0.100	6.600	0.910	0.053
carbon dioxide	CO ₂	inorganic gases	721	1,590.061	162.833	828.500	2,234.420	0.908	0.046
carbon monoxide	CO	inorganic gases	768	97.005	49.683	1.500	302.000	0.904	0.054
methane	CH ₄		589	4.656	3.322	0.000	24.100	0.906	0.046
nitric oxide	NO	nitrogen oxides	293	2.043	1.878	0.003	9.600	0.922	0.036
nitrogen dioxide	NO ₂	nitrogen oxides	246	1.236	0.958	0.048	5.287	0.925	0.031
nitrogen oxides	NOx	nitrogen oxides	145	3.654	2.679	0.027	11.290	0.888	0.075
particulate matter 2.5μm	PM _{2.5}	particulate matter	510	17.943	13.980	1.100	78.000	0.907	0.048
sulfur dioxide	SO ₂	inorganic gases	142	1.039	0.718	0.000	3.415	0.927	0.032
Primary Gases/Aerosols									
1,1,1,2-tetrachloroethane	C ₂ H ₂ Cl ₄		1	0.001	0.000	0.001	0.001	0.963	0.000
1,1,1-trichloroethane	C ₂ H ₃ Cl ₃		11	0.000	0.000	0.000	0.000	0.898	0.016
1,1,2,2-tetrachloroethane	C ₂ H ₂ Cl ₄	haloalkanes	2	0.005	0.001	0.004	0.005	0.908	0.022
1,1,2-trichloro-1,2,2-trifluoroethane	C ₂ Cl ₃ F ₃		2	0.000	0.000	0.000	0.000	0.956	0.007
1,1-dichloro-1-fluoroethane	CH ₃ CClF ₂	haloalkanes	2	0.001	0.000	0.001	0.001	0.900	0.023
1,1-dichloroethane	C ₂ H ₄ Cl ₂		1	0.000	0.000	0.000	0.000	0.963	0.000
1,1-dichloroethene	C ₂ H ₂ Cl ₂		1	0.001	0.000	0.001	0.001	0.940	0.000
1,1-difluoroethane	C ₂ H ₄ F ₂	haloalkanes	2	0.001	0.000	0.000	0.001	0.900	0.023
1,2,3,4-tetrahydroxylene	C ₁₈ H ₁₆		1	0.006	0.000	0.006	0.006	0.000	0.000
1,2,3-trimethylbenzene	C ₉ H ₁₂	aromatics	30	0.044	0.060	0.002	0.305	0.911	0.025
1,2,4-trichlorobenzene	C ₆ H ₅ Cl ₃		1	0.003	0.000	0.003	0.003	0.963	0.000
1,2,4-trimethylbenzene	C ₉ H ₁₂	aromatics	87	0.020	0.022	0.001	0.109	0.915	0.030
1,2-butadiene	C ₄ H ₆		7	0.005	0.003	0.002	0.012	0.922	0.016
1,2-dichloroethane	C ₂ H ₄ Cl ₂	haloalkanes	13	0.001	0.001	0.000	0.002	0.899	0.019
1,2-dichlorotetrafluoroethane	C ₂ Cl ₂ F ₄		3	0.000	0.000	0.000	0.000	0.936	0.007
1,2-diethylbenzene	C ₁₀ H ₁₄		10	0.004	0.002	0.002	0.008	0.934	0.019
1,2-propadienyl-benzene	C ₉ H ₈		4	0.016	0.008	0.005	0.026	0.000	0.000
1,3,5-trimethylbenzene	C ₉ H ₁₂	aromatics	56	0.003	0.002	0.000	0.010	0.913	0.031
1,3-butadiene	C ₄ H ₆	alkynes and alkenes	107	0.161	0.149	0.000	0.719	0.918	0.038

Focus: key modeling system

Improvements are needed to fire & smoke models

- Efforts like the Smoke & Emissions Model Intercomparison Project (Larkin et al 2012) highlighted needs for improvements
- Data sets are needed for development, evaluation, and improvement
- Attempts occurred to collect data sets at common-fire events (e.g., RxCADRE)

Consensus findings from post-RxCADRE workshops (2012-13)


- Integrated, large research campaigns are critical for making advances in wildland fire behavior, fire effects, and smoke science.
- An investment in coordinated sampling of fire-atmosphere interactions will benefit the science community and fire and fuels managers, who rely on operational fire and smoke models to guide wildland fire management (including prescribed burning).
- Measurements should be driven by model/tool needs, but also governed by oversight from a start-to-finish perspective

Fire And Smoke Model Evaluation Experiment

- FASMEE is an observational campaign to support:
 - evaluation of current operational fire and smoke modeling systems,
 - and advancement of new models and tools into operational use.
- FASMEE's uniqueness lies in its design to collect a coordinated library of fire and smoke data for use as training and evaluation inputs.

FASMEE objectives

FASMEE Planning: Phase I (2014-2017)

Interviews with modelers and scientists re: data inputs needed for model development:

“What data sets would help to evaluate [model] and advance beyond the current generation?”

“What would be needed to collect and create a coordinated set of model-input data sets for fire and smoke model evaluation and evolution?”

Detailed Study Plan resulted:

- measurement specifications,
- estimated budget,
- individual Discipline teams for measurement, and
- liaison/logistics group to facilitate access to burns

FASMEE Phase I

Models served by FASMEE datasets (partial list) – Output from Phase I Study Plan

Next Slide:
Measurement Specifications
(Also Phase I)

Model	Description	Applications	FASMEE Datasets	References
CAWFE	Coupled Atmosphere-Wildland Fire-Environment (CAWFE): a coupled weather—wildland fire computational model.	NCAR Simulation model (Janice Coen)	Fire behavior, meteorology and plume dynamics.	[7]
FIRETEC	HIGRAD/FIRETEC: physics-based, 3-D model that represents the coupled interaction between fire, fuels, atmosphere, and topography.	Simulation Model, Los Alamos National Laboratory, included in STANDFIRE	Fuel consumption, gridded fire behavior and radiative energy, meteorology and plume dynamics.	[9]
MesoNH/ ForeFire	Mesoscale non-hydrostatic model coupled with a surface atmospheric interaction model (SURFEX).	Desktop (unix)	Meteorology and plume dynamics	[5]
Vesta	Large-scale, cell-based wildland fire simulator developed within the Fire Paradox project.	Desktop	Gridded fire behavior and fire radiative energy observations.	[11]
WFDS	Wildland-Urban-Interface Fire Dynamics Simulator: computational fluid dynamics model that resolves buoyant flow, heat transfer, combustion, and thermal fuel degradation.	Desktop (unix) STANDFIRE (under development)	Fuel consumption, gridded fire behavior and radiative energy, meteorology and plume dynamics.	[10]
WRF-SFIRE (Spread FIRE model)	Weather Research and Forecasting—Spread Fire: combined atmosphere and fire spread model.	High performance computing cluster	Gridded fire behavior, meteorology and plume dynamics.	[3,4]

Disciplinary Measurement Teams

Smoke Emissions, Chemistry, & Transport

-Emissions factors (flaming, smoldering, biological)

-Smoke evolution & aging

Airborne, tower, & surface measurements

Fuels and Consumption

-Multi-scale characterization

-Links to moisture dynamics

*Airborne & surface LiDAR;
ground sampling*

Modeling

-Physics-based (2-D & 3-D)

-AI-ML (new addition)

integration of observations across multiple disciplines and platforms serve as inputs

Plume and Meteorology

-Mixing and entrainment

-Interactions of multiple cores & ignitions

Airborne, & tower measurements; LiDAR

Fire Dynamics

-Spatial/temporal heat flux

-Relationship to fire effects

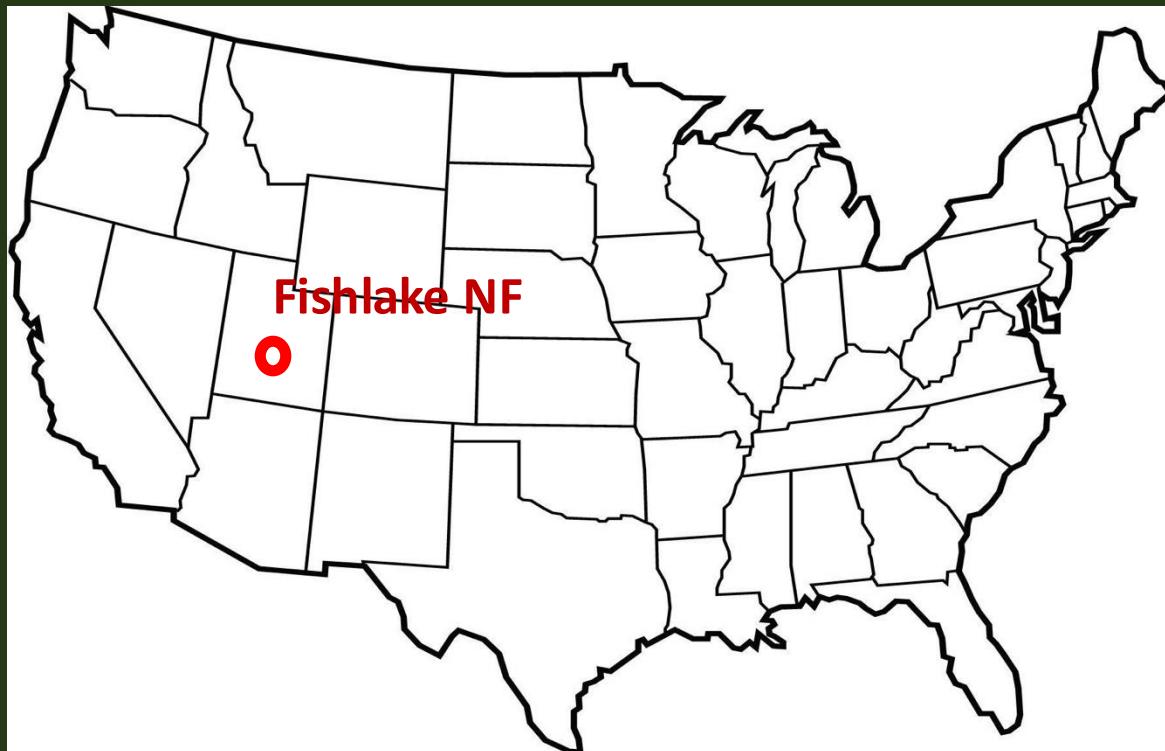
Airborne, ground, & satellite

Fire Effects

-Mortality mechanisms

-Rich datasets will reveal new processes

Airborne & surface measurements



Historic focus on high-severity fire...

...but, some modeling requires simpler terrain;

...renewed emphasis on “typical” prescribed fire;

...need for reduced uncertainty related to smoldering in organic soils (duff, peat, muck) and PM2.5 production

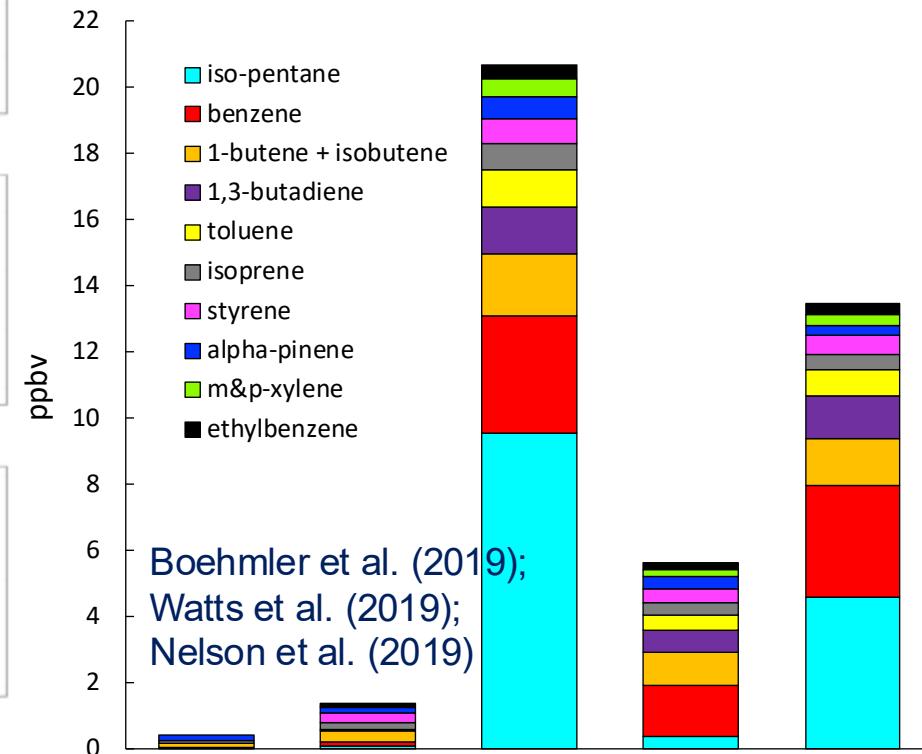
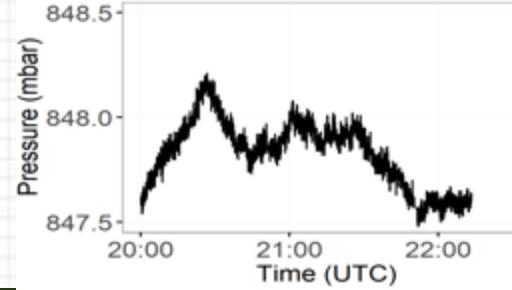
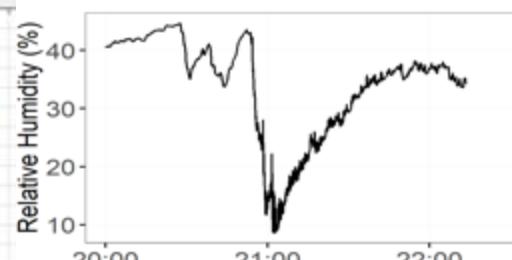
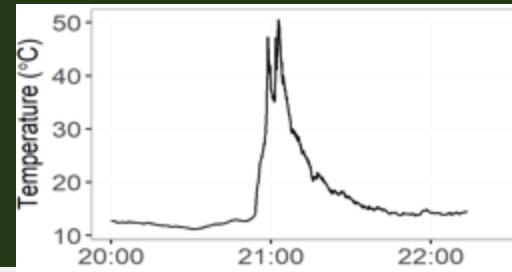
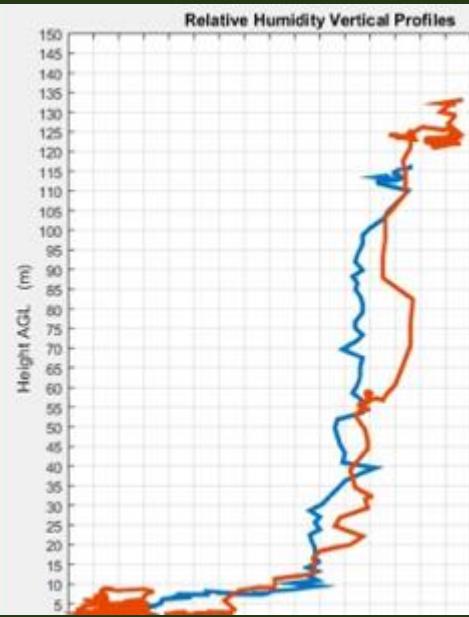
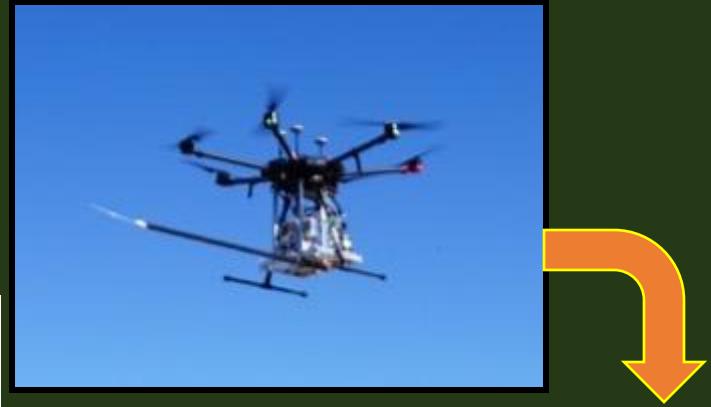
High-intensity “wildfire-surrogate” burns sought; found at Fishlake NF

Initial focus: high intensity

Fire Behavior Packages in Fishlake Rx unit, 2019 (B. Butler, RMRS)

2016-2020: “bridge-funding” by PNWRS

Coordination with WE-CAN/BB-Flux and FIREX-AQ--
smoke and chemistry measurements







- Campaigns Supported
 - WE-CAN & BBFLUX NSF: summer 2018
 - FIREX-AQ NOAA/NASA: summer 2019
- Assisted in selecting wildfires for airborne measurements
- 30+ publications (and continuing)
- 11 archived datasets (with more coming soon)

Proof-of-concept: UAS smoke measurements based on Phase I specifications

Atmospheric sensing and sampling:

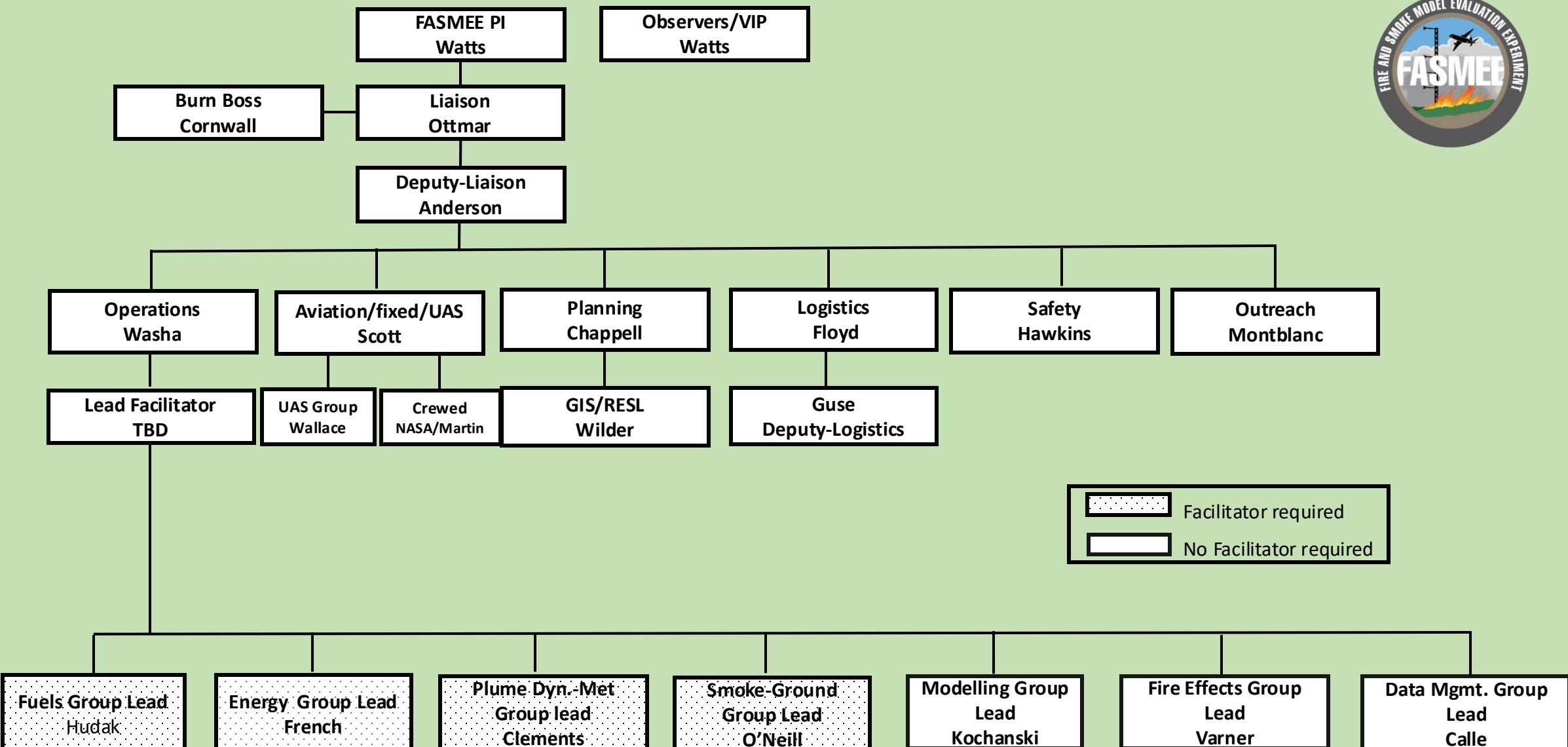
- Air quality (PM, CO, CO₂, O₃...)
- Air sampling (VOCs, trace gases)
- Meteorology (soundings, modeling)
- IR: Combustion efficiency and MCE
- Imagery: Plume development & movement

Boehmler et al. (2019);
Watts et al. (2019);
Nelson et al. (2019)

Proof of concept

Firefighter smoke exposure-avoidance by directing holding & mop-up by air

UAS supported fire crews locating spots following prescribed burns


2016-2020 achievements

FY22: Priority R&D Project Designation

- Re-organization of disciplines; recruitment of new partners
- Resumption of field campaigns post-pandemic
- New emphasis areas:
 - Data Integration/Management
 - Partnerships and outreach to under-represented/DEI
 - Carbon & Climate
- Current status: over 100 participants among 6+ agencies & 12+ university/NGO cooperators in at least 20 States

Operational Development: FASMEE Integrated Research Management Team (IRMT)

October 2023 campaign

- Over 50 research participants
- Simultaneous flight: 3 UAS, two crewed aircraft (USFS, UI, Trident, NASA)
- Data site established (NASA LaRC)
- USFS/NASA Field Day: informed host community of research activities; broad agency outreach goals

FIND IT @ NASA : Search NASA

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

+ HOME + MISSIONS + DATA + TOOLS + ABOUT US

Airborne Science Data for Atmospheric Composition

2023 FireSense FASMEE

Data Archive: FireSense / FASMEE 2023 [ArcView](#)

File Sharing [private]: Telecons, Meetings, Reports, etc.

Relevant Data / Links

MODIS/ASTER Airborne Simulator (MASTER) FireSense Campaign Page

Field Data Archive Introduction

Data Upload Tools

Steps for submitting data to the Archive

Data Submittal / Scanning

Register PI dataIDs

ICARTT Data Format Document

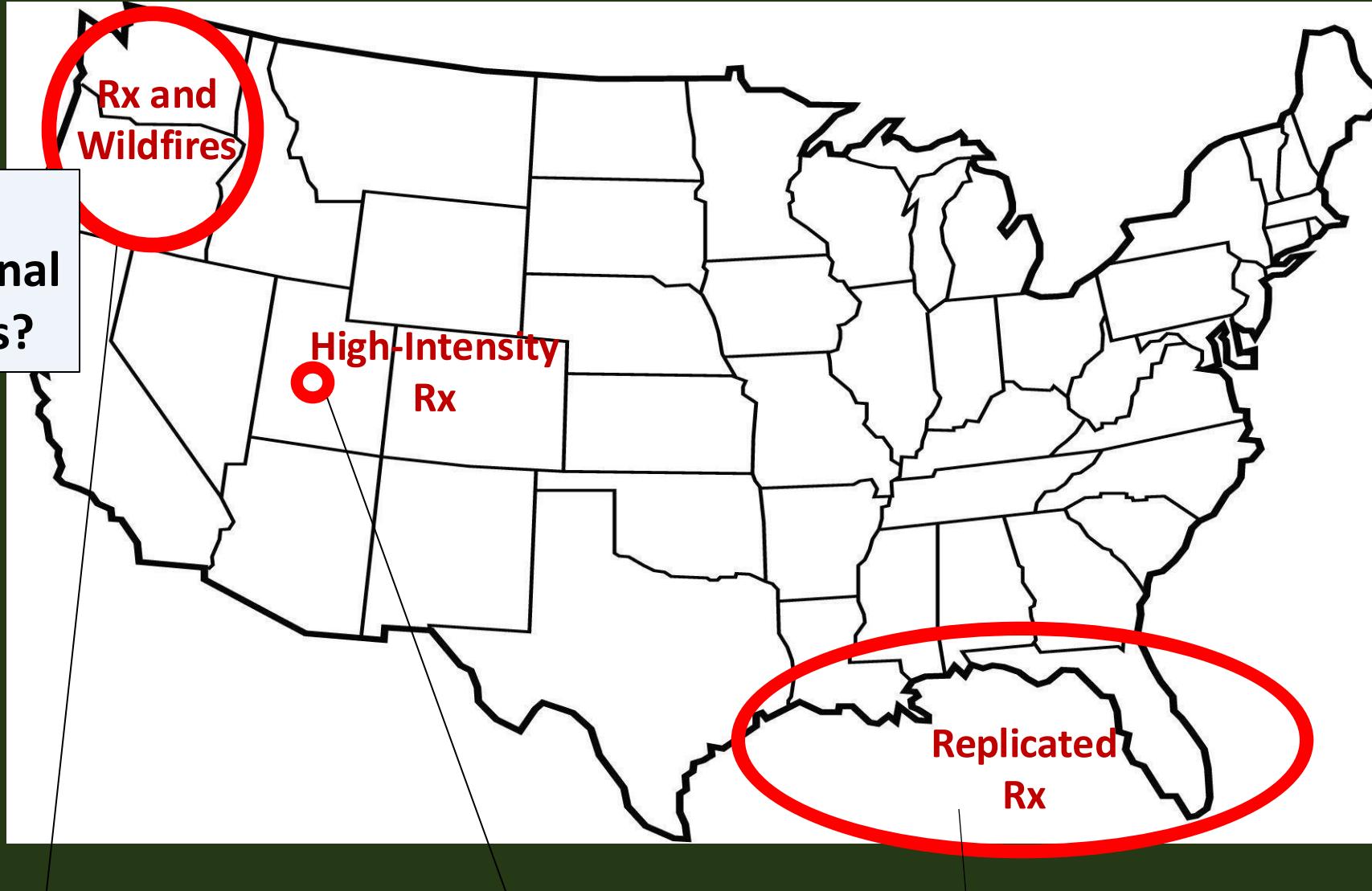
Useful Tools

- Download HDFView -- visual tool for browsing & editing HDF files [HDF](#)
- Download FileScanning S/W for **Windows** (Requires IE) [FileScanning](#)
- Download Flight Planning S/W for **Windows** (Requires Google Earth) [Flight Planning](#)

FIRE AND SMOKE MODEL EVALUATION EXPERIMENT FASMEE

The **Fire and Smoke Model Evaluation Experiment (FASMEE)** is a multi-agency, interdisciplinary collaborative effort to identify and collect critical measurements of fuels, fire behavior, fire energy, meteorology, smoke, and fire effects that will be used to evaluate and advance operational-used fire and smoke models. These data will promote science advancement that will give us a better understanding of wildland fire including how a fire behaves, the production and spread of smoke, and fire effects. This knowledge will promotes better prediction of the spread of smoke and the effects on people's health, firefighter health and safety and aids in the allocation of firefighting resources. Data collection has been initiated on large wildfires and prescribed fires within the Western Wildfire and Southwest field campaigns, and the 5-year study plan extends these data collection efforts over large prescribed burn units until 2028.

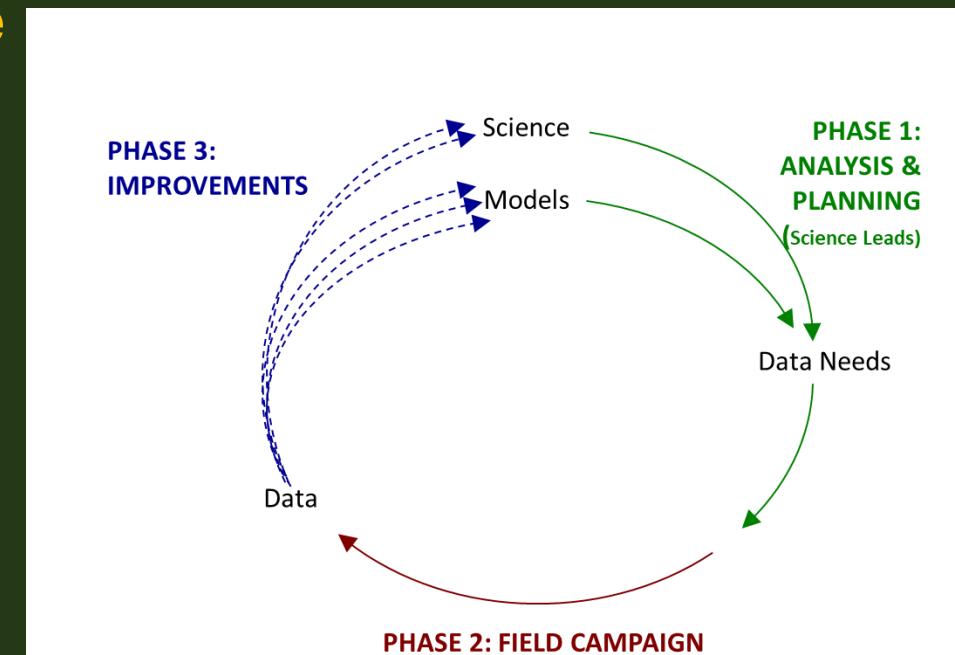
THE FIRE AND SMOKE MODEL EVALUATION EXPERIMENT (FASMEE)


POLAR ORBITING SATELLITE, GEOSTATIONARY SATELLITE, AIRCRAFT, SATELLITE IMAGE, DOWNWIND TOWER, AIRCRAFT, SATELLITE SOUNDING, UAS, LIDAR, RADIOSONDE, LIDAR, AUTOMATIC STATION

2016-2020 achievements

Possible additional field sites

Alaska;
International
Locations?


USFS Priority
Landscape(s)

Fishlake NF

Southeast US

Addressing Gaps & Next-Steps Planning

- Workshops in 2024 for identifying “hard” gaps and updating study plan
 - NSF co-sponsored
 - May 2024: Study Plan & work plans update (new science & needs)
 - Planning for Fall ‘24 field campaign included
 - Jan 2025: Data & modeling workshop
 - Applying the “data library” to model evaluation & improvement
 - A chance to continue for another cycle

Further reading: www.fs.usda.gov/research/pnw/centers/fasmee
www.fasmee.net

Video: UAS over small-unit burns, Fishlake NF (Utah)