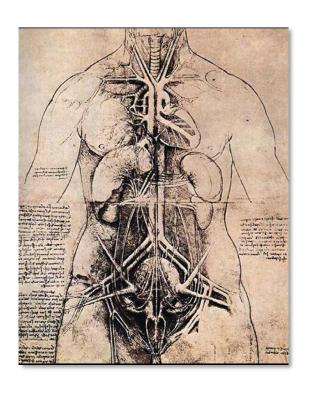
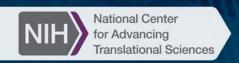
Microphysiological Systems: Tissues-on-Chips for Drug Safety and Efficacy Testing

Deriving Drug Discovery Value from Large-Scale Genetic Bioresources Institute of Medicine's Roundtable on Translating Genomic-based Research for Health March 22, 2016 Washington, D.C.

DANILO A. TAGLE, PH.D.

ASSOCIATE DIRECTOR FOR SPECIAL INITIATIVES
NATIONAL CENTER FOR ADVANCING TRANSLATIONAL SCIENCES
NATIONAL INSTITUTES OF HEALTH


NCATS


Microphysiological Systems Program "Tissue Chips"

GOAL: Develop an in vitro platform that uses human tissues to evaluate the efficacy, safety and toxicity of promising therapies.

- All ten human physiological systems will be functionally represented by human tissue constructs:
 - Circulatory
 - Endocrine
 - GastrointestinalReproductive
 - Immune
 - Integumentary

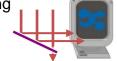
- Musculoskeletal
- Nervous
- Respiratory
- Urinary
- Physiologically relevant, genetically diverse, and pathologically meaningful.
- Modular, reconfigurable platform.
- Tissue viability for at least 4 weeks.
- Community-wide access.

NIH Tissues-on-Chips Program

Microphysiological Systems –

A Multidisciplinary, Team-Science Approach

Computational Design


- systems integration
- multi-scale modeling
 - simulation
 - feedback

- real-time, label-free, non-destructive sensing
- imaging

Cells

- stem/progenitor
- differentiated

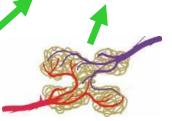
Scaffold

- purified ECM

- composites

- synthetic polymers

- mixed cell types
- gene editing



- porosity
- topography
- stiffness

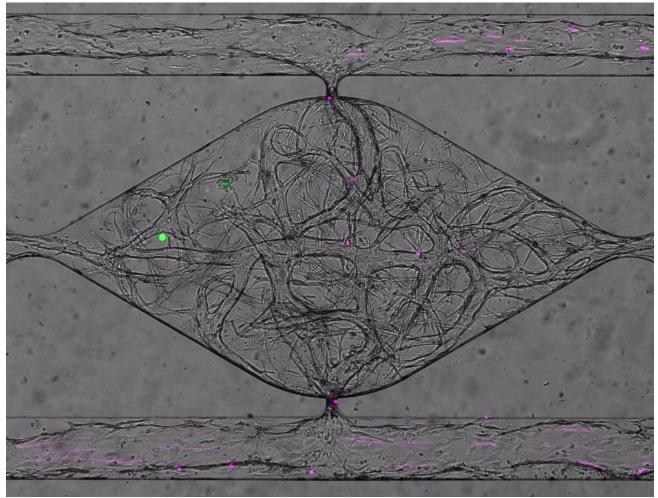
- cytokine gradients
- controlled release

Perfusion

- embedded channels
- vascularization

Bioreactors

- optimized culture conditions
- biomechanical properties
- blood mimetics

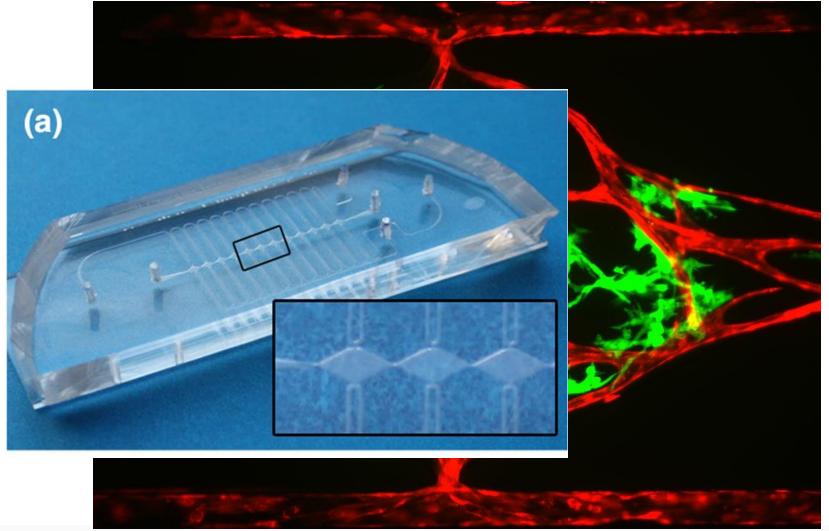

Host Response

- generalized inflammation
- specific immunity

Innervation

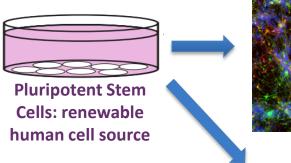
- signal propagation
- coordinated response

Microvasculature


- 7 days
- SW620 tumor spheroids
- hiPS-EC
- 1 µm beads

Steven George, Univ. Washington

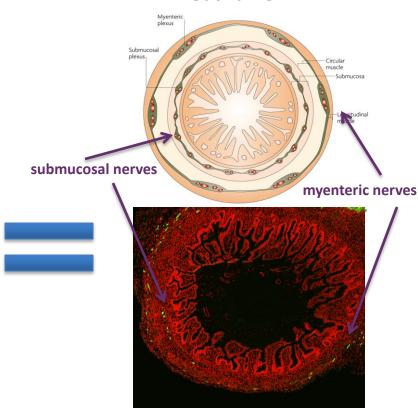
Colon tumor (HCT116) supported by microvasculature



Steven George, Univ. Washington

Innervation of Gut Enteroids

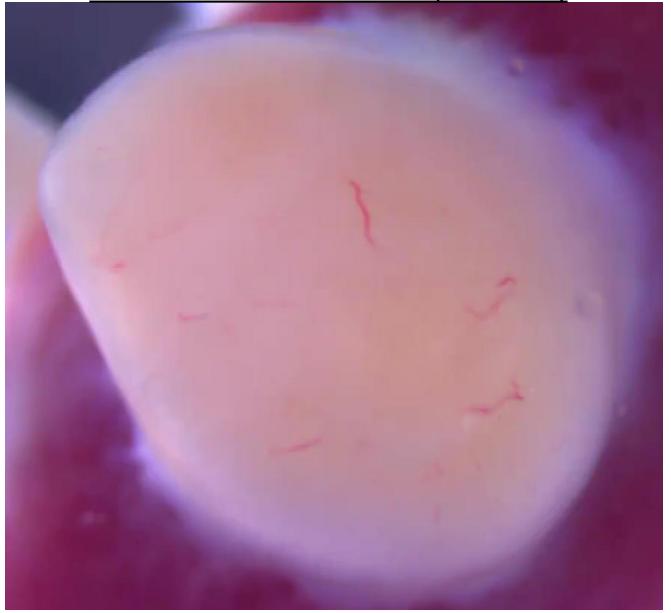
Vagal Neural Crest Cells: peripheral nerve cells



The nervous system in the gut plays a critical role in GI function, including peristalsis (gut contraction). Both nerve and gut tissue can be engineered using renewable human cell sources

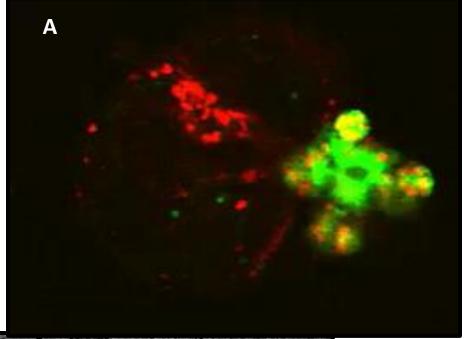
Gut enteroid: 3D mulitcellular mini gut

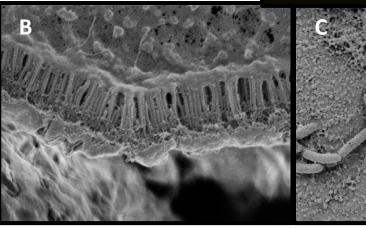
Gut Lumen



As these systems begin to mature, the nerve tissues are added to the GI, creating physiological-like innervated structures

James Wells, Univ. Cincinnati

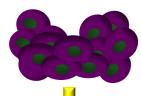



Electrical field stimulation (with ENS)

Enteroids mimic gut structure and function

Mark Donowitz, Johns Hopkins

Future Applications of Tissues-on-chips


Differentiation/maturation

into all major organs

Human Fibroblasts

Genetic reprogramming

iPSC's

Druggable Genome

- Gene Editing on isogenic background for physiological differences among diverse populations:
- Genetic variation
- · Examine various demographics
- Gender or age variation

Precision Medicine (you-on-chip)

- Drug response in individuals
- Individualized medicine and therapeutics

Clinical Trials on Chips

FY16 Rare disease research and therapeutics

FY17 Disease Modeling

- Disease pathogenesis
- Dissecting mutations in isogenic background

FY17 Tissue Chips in Space

Human-on-a-Chip

Microbiome

Environmental Toxins

Countermeasure Agents

Infectious disease