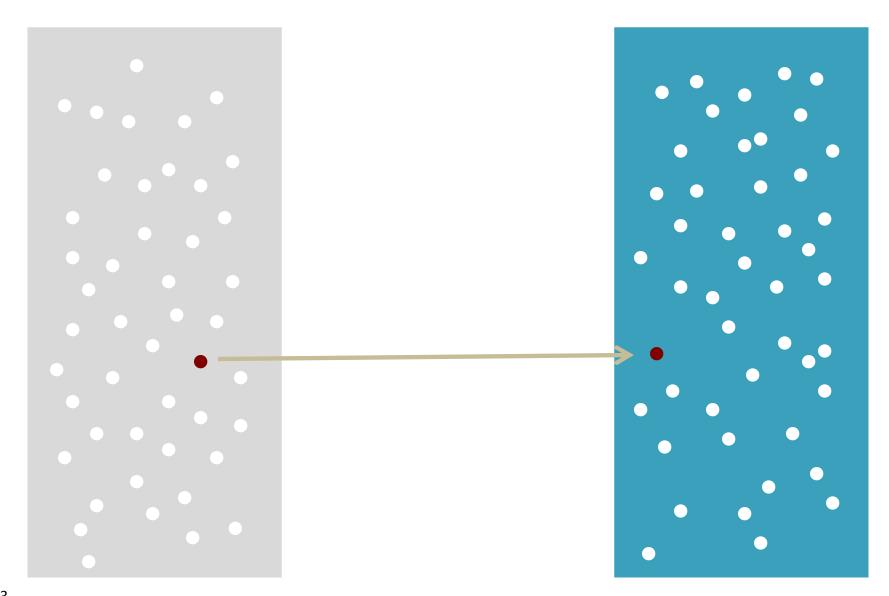


Dataset on diversity in the sequence



Dataset on diversity in the phenotype

Dataset on diversity in the sequence

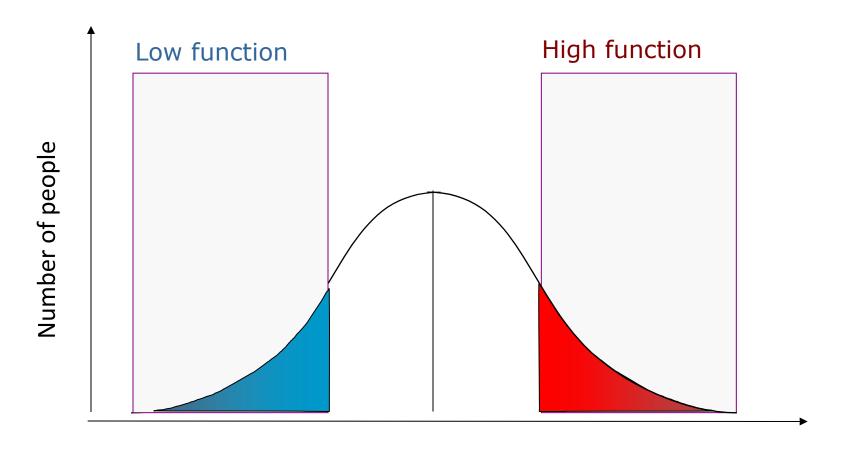
Dataset on diversity in the phenotype

Data on diversity in the sequence of Icelandic genomes

- Genotyped 160.000 Icelanders or about half the nation with one of the Illumina chips
- Whole genome (?) sequenced over 20.000 Icelanders to the median depth of 30x

 Documented genealogy (phasing instrument) of the entire nation centuries back in time

- Imputed variants down to a frequency of 0.01% into 390.000 Icelanders dead or alive
- List of 16000 Icelanders who are homozygous for a loss of function mutation in at least one of 1800 genes



Data on diversity in phenotypes of Icelandic genomes

- 5000+ phenotypes including
- All cancer diagnosed in Iceland since 1950
- All CADs and myocardial infarctions since 1980
- All artificial hips and knees since the procedures came to Iceland
- All cases of asthma and COPD since 1970
- All cases of schizophrenia and bipolar disease since 1970
- Birthweight and length of the entire nation as weel as annual measures of weight and height from age 6 to 12.
- National database on all drug prescriptions
- Educational attainment and results of standardized exams for the entire nation over 60 years
- Socioeconomic status of the entire nation
- All cases of chronic kidney disease since 1970
- Rheumatoid arthritis, psoriasis, atopic dermatidis and MS
- All cases of Type I and II diabetes ever diagnosed in Iceland
- BMI of ca 100.000 Icelanders
- Memberships in all associations of the creative professions

Normal distribution of physiologic function

Complex Traits that deCODE Has Associated with Common Variants in the Sequence

Type 2 diabetes

Myocardial infarction/CAD

Abdominal aortic aneurysm

Intracranial aneurysm

Atrial fibrillation

dementia

Stroke

Nicotine addiction

Lung cancer

Peripheral arterial disease

Prostate cancer

Breast cancer

Exfoliation Glaucoma

Restless leg syndrome

Osteoporosis/BMD

Open angle glaucoma

Height

Pigmentation

Recombination rate

Melanoma

Squamous cell carcinoma

Schizophrenia

Urinary bladder cancer

Asthma

Basal cell carcinoma

BMI

Menarch

Thyroid cancer

Essential tremor

Chronic renal failure

Heart block

Primary open angle glaucoma

Coffee consumption

Love of crossword puzzles

And this list is growing

Complex Traits that deCODE Has Associated with Rare Variants in the Sequence

Ovarian cancer

Glioma

Basal cell carcinoma of the skin

Prostate cancer

Cancer of the biliary tract

Chronic lymphocytic lymphoma

Alzheimer's Disease

Osteoporosis

ADHD

Type 2 Diabetes

Sudden cardiac death

Atrial fibrillation

Osteoarthritis

Gout

Age Related Macular Degeneration

Height

Dyslexia

Schizophrenia

Autism

Stomach cancer

Waldenström's macroglobulinemia

MGUS

Lung cancer

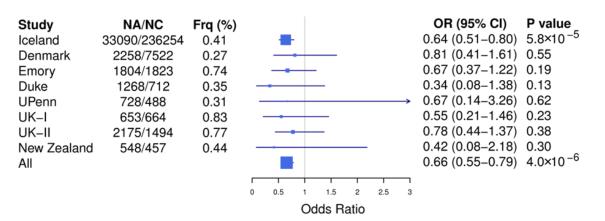
SSStom

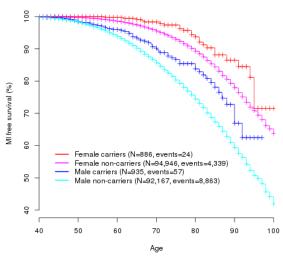
How we use these data to serve drug discovery and development

PCSK9 Arg46Leu associates with lower non-HDL and protects against CAD

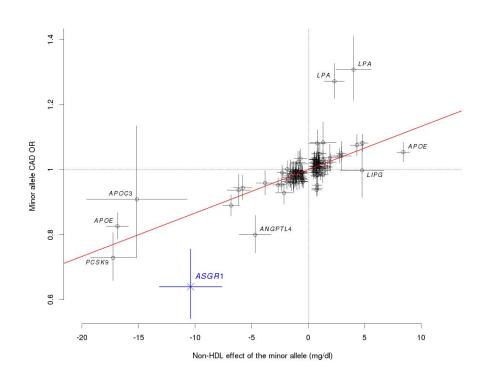
			chole	Non-HDL cholesterol (N=136,261)		CAD all (N=36,886)		CAD early onset (N=5,196)	
rsID	PCSK9 effect	Allele freg.	Effect (mg/dl)	P	OR	P	OR	P	
rs11591147	Arg46Leu	1.2%	-17.9	2.3E-73	0.73	2.8E-7	0.60	1.9E-4	

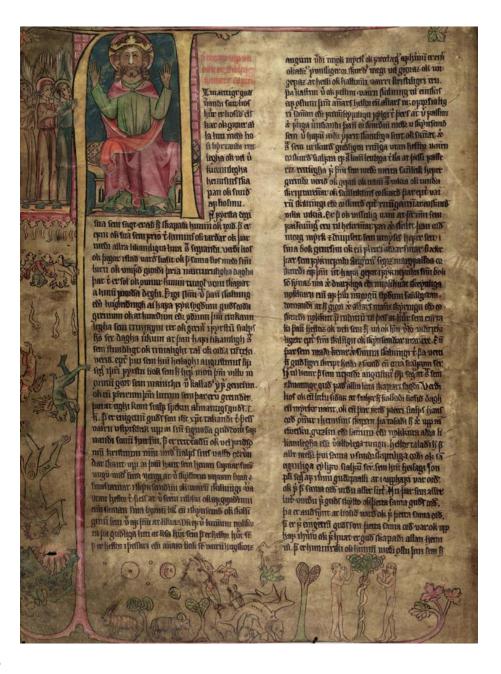
- Arg46Leu variant is predicted through functional studies to be a loss of function mutation
- Arg46Leu variant is associated with 2.3 years older age at diagnosis of CAD and 3 years for MI


Screening for potential side effects of PCSK9 inhibitor


Phenotype	N cases/contr	P value	OR
Alzheimer	3,754/163,803	0.37	0.89
Other dementia	2,176/82,025	0.66	0.93
Type 2 diabetes	11,206/269,13 9	0.54	1.05
Lifespan	118,626	0.11	+8 months

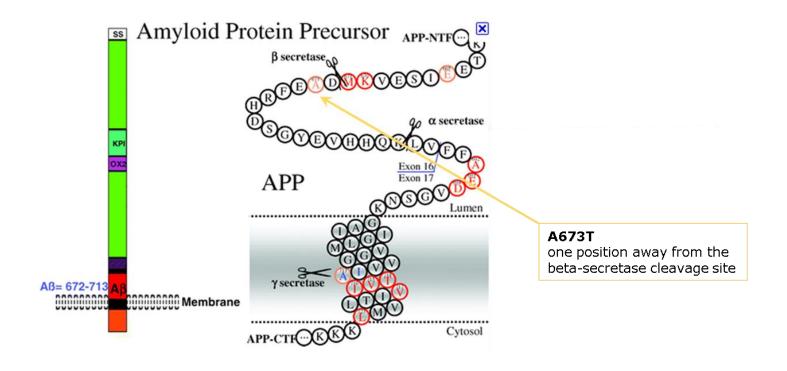
Another CAD target coming out of our genetics


The del12 protects against coronary artery disease and delays the onset myocardial infraction



Trait	Variant			
	PCSK9 (Arg46Leu), MAF=1.2%	(del12), MAF=0.41%		
Non-HDL cholesterol	-0,49 (SD) (P=1.2x10 ⁻⁶⁴)	-0,19 (SD) (P=1.4x10 ⁻⁹)		
CAD	0.75 (OR) (P=1.9x10 ⁻⁵)	0.62 (OR) (P=2.6x10 ⁻⁵)		
MI	0.74 (OR) (P=1.7x10 ⁻⁴)	0.56 (OR) (P=2.0x10 ⁻⁵)		
Lifespan	+8 months (P=0.11)	+18 months (P=0.04)		

The relationship between the effect of sequence variants on non-HDL cholesterol and their effect on CAD risk



Alzheimer's

A mutation in *APP* protects against Alzheimer's disease and age-related cognitive decline

Thorlakur Jonsson¹, Jasvinder K. Atwal², Stacy Steinberg¹, Jon Snaedal³, Palmi V. Jonsson^{3,8}, Sigurbjorn Bjornsson³, Hreinn Stefansson¹, Patrick Sulem¹, Daniel Gudbjartsson¹, Janice Maloney², Kwame Hoyte², Amy Gustafson², Yichin Liu², Yanmei Lu², Tushar Bhangale², Robert R. Graham², Johanna Huttenlocher^{1,4}, Gyda Bjornsdottir¹, Ole A. Andreassen⁵, Erik G. Jönsson⁶, Aarno Palotie⁷, Timothy W. Behrens², Olafur T. Magnusson¹, Augustine Kong¹, Unnur Thorsteinsdottir^{1,8}, Ryan J. Watts² & Kari Stefansson^{1,8}

Alzheimer's

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 10, 2013

VOL. 368 NO. 2

Variant of TREM2 Associated with the Risk of Alzheimer's Disease

Thorlakur Jonsson, Ph.D., Hreinn Stefansson, Ph.D., Stacy Steinberg Ph.D., Ingileif Jonsdottir, Ph.D., Palmi V. Jonsson, M.D., Jon Snaedal, M.D., Sigurbjorn Bjornsson, M.D., Johanna Huttenlocher, B.S., Allan I. Levey, M.D., Ph.D., James J. Lah, M.D., Ph.D., Dan Rujescu, M.D., Harald Hampel, M.D., Ina Giegling, Ph.D., Ole A. Andreassen, M.D., Ph.D., Knut Engedal, M.D., Ph.D., Ingun Ulstein, M.D., Ph.D., Srdjan Djurovic, Ph.D., Carla Ibrahim-Verbaas, M.D., Albert Hofman, M.D., Ph.D., M. Arfan Ikram, M.D., Ph.D., Cornelia M van Duijn, Ph.D., Unnur Thorsteinsdottir, Ph.D., Augustine Kong, Ph.D., and Kari Stefansson. M.D., Ph.D.

ABSTRACT

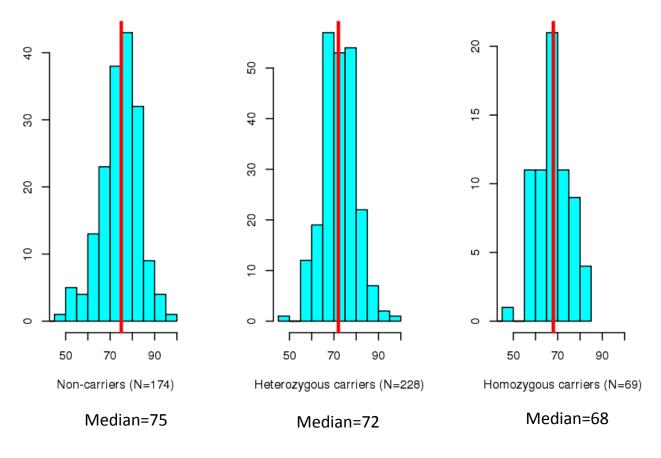
BACKGROUND

Sequence variants, including the $\varepsilon 4$ allele of apolipoprotein E, have been associated with the risk of the common late-onset form of Alzheimer's disease. Few rare variants affecting the risk of late-onset Alzheimer's disease have been found.

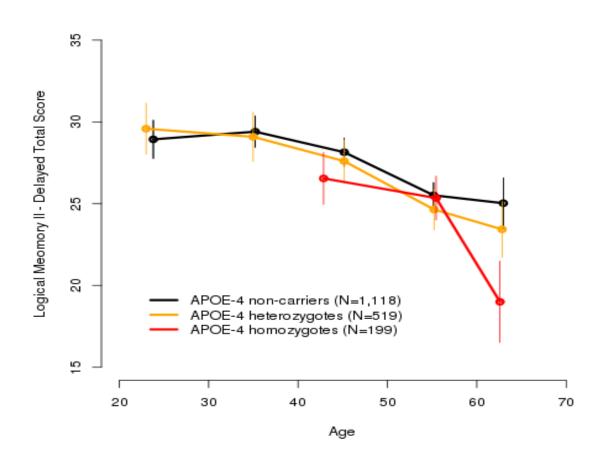
METHODS

We obtained the genome sequences of 2261 Icelanders and identified sequence variants that were likely to affect protein function. We imputed these variants into the genomes of patients with Alzheimer's disease and control participants and then tested for an association with Alzheimer's disease. We performed replication tests using case—control series from the United States, Norway, the Netherlands, and Germany. We also tested for a genetic association with cognitive function in a population of unaffected elderly persons.

RESULTS

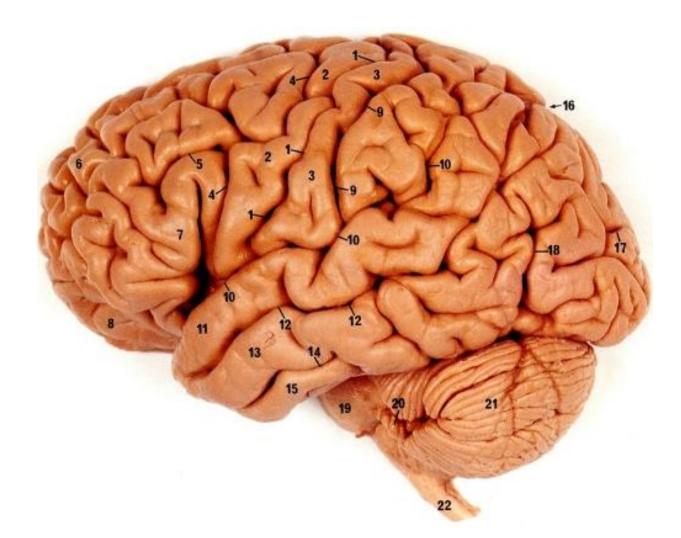

A rare missense mutation (rs75932628-T) in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2), which was predicted to result in an R47H substitution, was found to confer a significant risk of Alzheimer's disease in Iceland (odds ratio, 2.92; 95% confidence interval [CI], 2.09 to 4.09; P=3.42×10⁻¹⁰). The mutation had a frequency of 0.46% in controls 85 years of age or older. We observed the association in additional sample sets (odds ratio, 2.90; 95% CI, 2.16 to 3.91; P=2.1×10⁻¹² in combined discovery and replication samples). We also found that carriers of rs75932628-T between the ages of 80 and 100 years without Alzheimer's disease had poorer cognitive function than noncarriers (P=0.003).

From deCODE Genetics (T.I., H.S., S.S., I.J., U.T., A.K., K.S.), the University of Iceland, Faculty of Medicine (I.J., P.V.J., U.T., K.S.), and Landspitali University Hospital (P.V.J., J.S., S.B.) - all in Reykjavik, Iceland; the Department of Medical Genetics, Institute of Human Genetics, Tübingen (J.H.), Division of Molecular and Clinical Neurobiology, Department of Psychiatry, University of Munich, Munich (L.M.U.) and University of Halle, Halle (D.R., I.G.), and the Department of Psychiatry, University of Frankfurt am Main, Frankfurt am Main (H.H.) - all in Germany; the Department of Neurology, Alzheimer's Disease Center, Emory University School of Medicine, Atlanta (A.I.L., J.J.L.); K.G. Jebsen Center for Psychosis Research, Division of Mental Health and Addiction (O.A.A., S.D.), and the Geriatric Department, Norwegian Center for Aging and Health (K.E., I.U.), Oslo University Hospital, and the Institute of Clinical Medicine, University of Oslo (O.A.A., K.E., S.D.) - all in Oslo; and the Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands, (C.I.-V., A.H., M.A.I., C.M.D.). Address reprint requests to Dr. K. Stefansson at deCODE Genetics, Stur-



When to begin to treat in Alzheimer's

Alzheimer's disease age at onset by APOE genotype

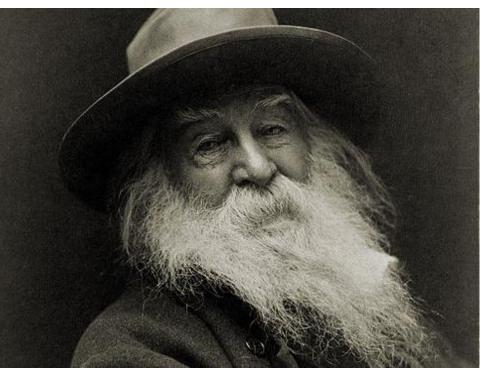

Wechsler Memory Scale decline with age

Vertical bars indicate 95% CIs

Gaps to be filled

- Much better annotation of intergenic sequences
- Societal acceptance of the duty to contribute data in return for access to healthcare
- Longer reads on whole genomes of populations
- Somatic sequencing of all organs in a large numbers of people
- Figuring out how the brain work

Erfðafræði reykinga og sjúkdóma sem Þeim tengjast


LETTERS

A variant associated with nicotine dependence, lung cancer and peripheral arterial disease

Thorgeir E. Thorgeirsson^{1*}, Frank Geller^{1*}, Patrick Sulem^{1*}, Thorunn Rafnar^{1*}, Anna Wiste^{1,2}, Kristinn P. Magnusson¹, Andrei Manolescu¹, Gudmar Thorleifsson¹, Hreinn Stefansson¹, Andres Ingason¹, Simon N. Stacey¹, Jon T. Bergthorsson¹, Steinunn Thorlacius¹, Julius Gudmundsson¹, Thorlakur Jonsson¹, Margret Jakobsdottir¹, Jona Saemundsdottir¹, Olof Olafsdottir¹, Larus J. Gudmundsson¹, Gyda Bjornsdottir¹, Kristleifur Kristjansson¹, Halla Skuladottir³, Helgi J. Isaksson⁴, Tomas Gudbjartsson⁵, Gregory T. Jones⁸, Thomas Mueller⁹, Anders Gottsäter¹⁰, Andrea Flex¹¹, Katja K. H. Aben^{12,13}, Femmie de Vegt¹², Peter F. A. Mulders¹⁴, Dolores Isla¹⁵, Maria J. Vidal¹⁵, Laura Asin¹⁶, Berta Saez¹⁷, Laura Murillo¹⁸, Thorsteinn Blondal¹⁹, Halldor Kolbeinsson⁶, Jon G. Stefansson⁶, Ingunn Hansdottir²⁰, Valgerdur Runarsdottir²⁰, Roberto Pola^{11,21}, Bengt Lindblad¹⁰, Andre M. van Rij⁸, Benjamin Dieplinger⁹, Meinhard Haltmayer⁹, Jose I. Mayordomo^{15,16,17}, Lambertus A. Kiemeney^{12,13,14}, Stefan E. Matthiasson²², Hogni Oskarsson²³, Thorarinn Tyrfingsson²⁰, Daniel F. Gudbjartsson¹, Jeffrey R. Gulcher¹, Steinn Jonsson⁷, Unnur Thorsteinsdottir^{1,22}, Augustine Kong¹ & Kari Stefansson^{1,22}

Smoking is a leading cause of preventable death, causing about 5 million premature deaths worldwide each year^{1,2}. Evidence for genetic influence on smoking behaviour and nicotine dependence (ND)^{3–8} has prompted a search for susceptibility genes. Furthermore, assessing the impact of sequence variants on smoking-related diseases is important to public health^{9,10}. Smoking is the major risk factor for lung cancer (LC)^{11–14} and is one of the main risk factors for peripheral arterial disease (PAD)^{15–17}. Here we identify a common variant in the nicotinic acetylcholine recentor.

smoking, with SQ reported as cigarettes per day. All SQ data were clustered into categories (see Supplementary Information) and we refer to them as 'SQ levels'. The SQ levels were 0 (1–10 cigarettes per day), 1 (11–20), 2 (21–30) and 3 (31 or more). Each increment represents an increase in SQ of 10 cigarettes per day. Allele T of the SNP rs1051730 was most strongly associated with SQ, and the association was highly significant ($P = 5 \times 10^{-16}$). The SNP is within the CHRNA3 gene in a linkage disequilibrium block also containing two other genes. CHRNA5 and CHRNB4 that encode picotinic acetal.

