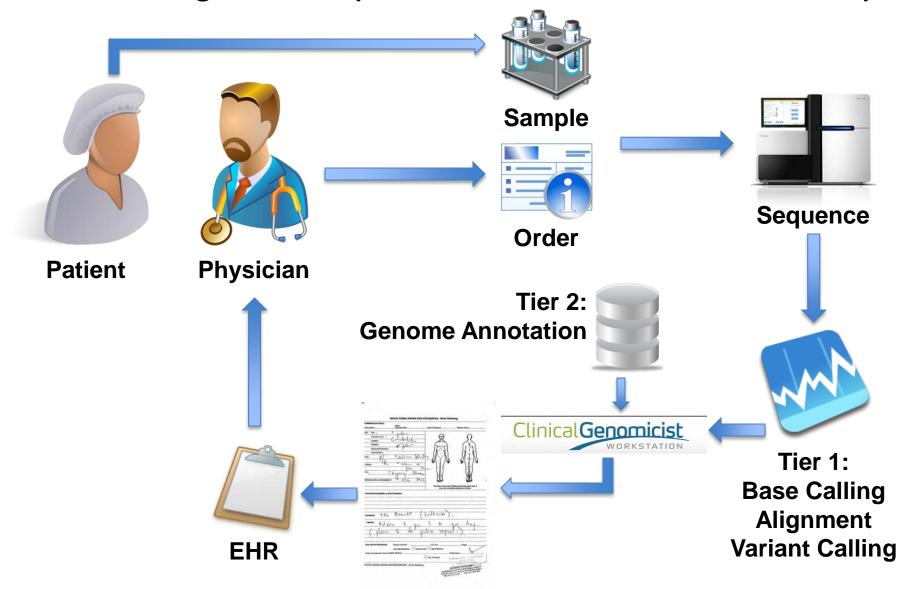

Assessing Genomic Sequencing Information for Health Care Decision Making: A Workshop

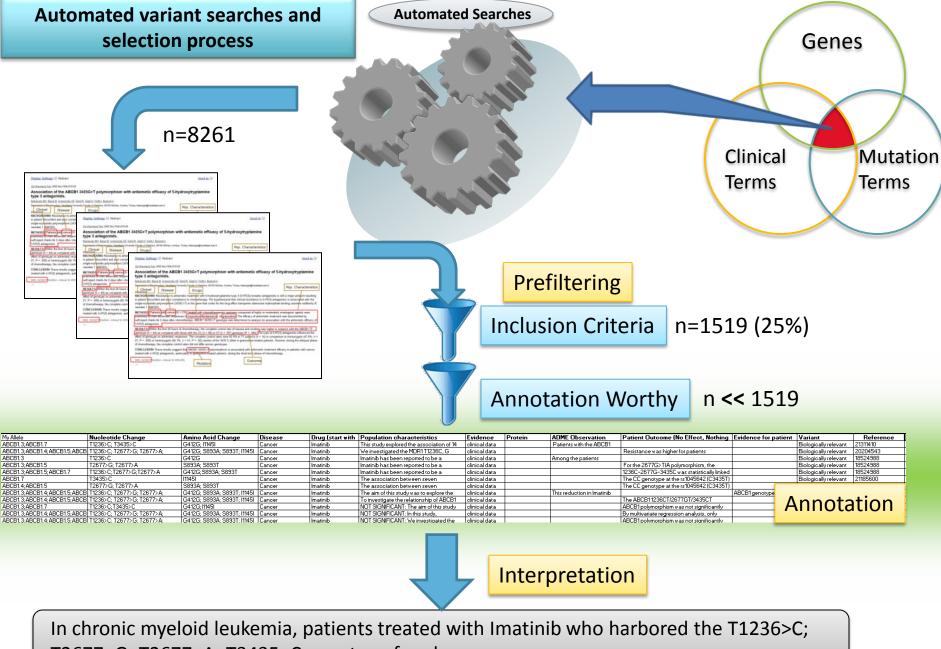
Shashikant Kulkarni, M.S (Medicine)., Ph.D., FACMG Associate Professor of Pathology & Immunology Associate Professor of Pediatrics and Genetics Director of Cytogenomics and Molecular Pathology

Washington University School of Medicine in St. Louis



Evidence-based review of variants

Introduction to Workflow and process


NGS testing workflow (Clinical Genomicist workstation- CGW)

Tier 3: Medical Knowledgebase

Critical assessment of variants

Variant analysis and filtration

T2677>G; T2677>A; T3435>C genotype fared

Gene Abstracts Index

4527 <u>EGFR (4527)</u>	603 <u>NRAS (603)</u>	292 <u>AKT1 (292)</u>	114 <u>STK11 (114)</u>	49 <u>SMO (49)</u>	18 ATRX (18)	2 <u>RXRB (2)</u>	
3087 <u>KRAS (3087)</u>	584 <u>GSTP1 (584)</u>	283 <u>CYP19A1 (283)</u>	104 <u>FGFR2 (104)</u>	46 <u>JAK1 (46)</u>	16 <u>LCK (16)</u>	2 <u>PSMB1 (2)</u>	
2626 <u>TP53 (2626)</u>	552 <u>ABCB1 (552)</u>	273 <u>RB1 (273)</u>	102 <u>CYP2C19 (102)</u>	46 <u>ASXL1 (46)</u>	15 <u>SLC22A1 (15)</u>	2 CHIC2 (2)	
2240 <u>BRCA1 (2240)</u>	531 MTOR (531)	243 <u>UGT1A1 (243)</u>	99 <u>PTPN11 (99)</u>	45 MYD88 (45)	13 <u>SLC22A2 (13)</u>	1 RXRG (1)	
1717 <u>BRCA2 (1717)</u>	503 <u>TAS2R38 (503)</u>	243 <u>HRAS (243)</u>	98 <u>ERG (98)</u>	39 <u>JAK3 (39)</u>	12 <u>AKT3 (12)</u>	1 PSMD2 (1)	
1591 <u>KIT (1591)</u>	497 <u>VHL (497)</u>	233 <u>IDH1 (233)</u>	86 <u>SMARCB1 (86)</u>	38 MAP2K2 (38)	11 <u>IL2RG (11)</u>	1 <u>INPP4B (1)</u>	
1481 <u>BRAF (1481)</u>	482 <u>JAK2 (482)</u>	220 <u>DPYD (220)</u>	85 <u>TET2 (85)</u>	38 <u>ERBB4 (38)</u>	11 GNA11 (11)	1 FSTL5 (1)	5.1
1382 <u>ERBB2 (1382)</u>	471 ESR1 (471)	206 <u>IL2RA (206)</u>	84 <u>SHH (84)</u>	36 <u>SLCO1B1 (36)</u>	10 <u>IL2RB (10)</u>	0 RARG (0)	Relevant literature
1185 <u>RET (1185)</u>	393 <u>RUNX1 (393)</u>	205 <u>CDKN2B (205)</u>	82 <u>CYP2C9 (82)</u>	35 MAP3K1 (35)	8 <u>DDR2 (8)</u>	0 <u>PSMD1 (0</u>	broken down by gene
1166 <u>APC (1166)</u>	374 <u>NPM1 (374)</u>	204 <u>CEBPA (204)</u>	82 <u>ABCC2 (82)</u>	33 <u>FLT1 (33)</u>	7 <u>SUFU (7)</u>	0 <u>PSMB2 (0</u>	
1084 <u>PTEN (1084)</u>	354 <u>SRC (354)</u>	186 <u>SMAD4 (186)</u>	81 MPL (81)	33 <u>CYP2B6 (33)</u>	7 <u>PSMB5 (7)</u>	0 <u>NELL2 (0)</u>	Sorted by annotation
1080 <u>CDKN2A (1080)</u>	352 <u>PDGFRA (352)</u>	177 <u>KDR (177)</u>	78 <u>ERBB3 (78)</u>	31 <u>HNF1A (31)</u>	6 <u>SLC31A1 (6)</u>	0 <u>LTK (0)</u>	worthiness
1043 MLH1 (1043)	351 <u>WT1 (351)</u>	176 PDGFRB (176)	77 <u>CSF1R (77)</u>	31 <u>AKT2 (31)</u>	6 <u>RARB (6)</u>	0 <u>LAMA2 (0</u>	
956 MYC (956)	323 <u>CYP2D6 (323)</u>	154 <u>CDH1 (154)</u>	76 <u>RARA (76)</u>	28 <u>PIK3R1 (28)</u>	5 <u>YES1 (5)</u>	0 <u>H3F3A (0)</u>	Human interpretation
942 <u>PIK3CA (942)</u>	315 <u>ABL1 (315)</u>	147 <u>NOTCH1 (147)</u>	70 <u>CYP2A6 (70)</u>	25 <u>MST1R (25)</u>	5 <u>RXRA (5)</u>	Į	
899 <u>FLT3 (899)</u>	308 <u>NF1 (308)</u>	143 <u>FGFR3 (143)</u>	59 <u>GNAS (59)</u>	25 <u>GNAQ (25)</u>	4 <u>ROS1 (4)</u>		
881 <u>MET (881)</u>	304 <u>FBXW7 (304)</u>	131 PTCH1 (131)	53 <u>FGFR4 (53)</u>	23 <u>TYK2 (23)</u>	3 <u>SLC45A3 (3)</u>		
731 <u>ATM (731)</u>	300 MLL (300)	130 <u>CDA (130)</u>	53 <u>DNMT3A (53)</u>	22 <u>MAP2K4 (22)</u>	3 <u>SLC34A2 (3)</u>		

20 RPS6KB1 (20) 3 PHF6 (3)

3 ABL2 (3)

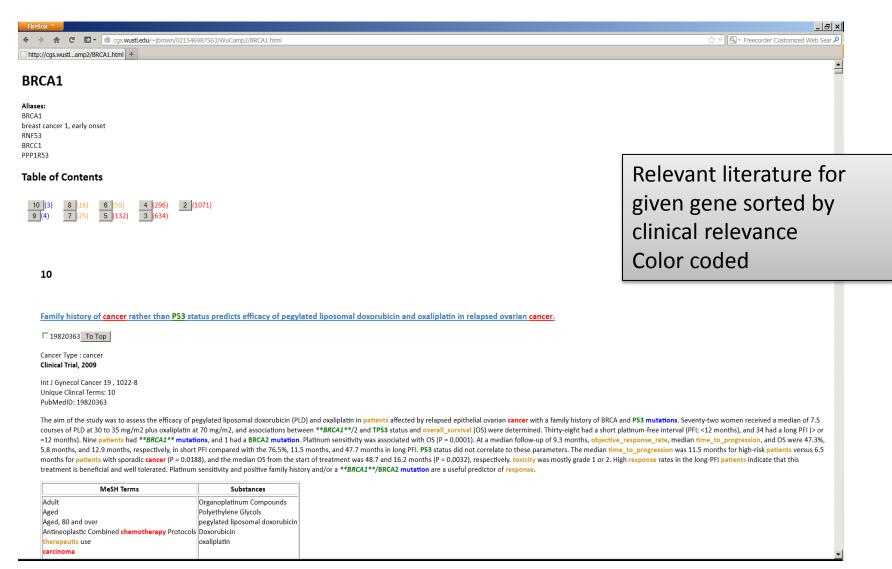
19 DDR1 (19)

717 CTNNB1 (717)

655 MAPK1 (655)

298 FGFR1 (298)

294 ALK (294)

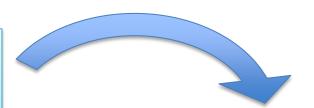

122 ESR2 (122)

120 IDH2 (120)

52 FLT4 (52)

51 EZH2 (51)

Gene Literature


Search Results Annotation

Inclusion Criteria:

- 1. Paper must be human clinical data (n >= 7)
- 2. Paper describe one or more mutations
- 3. Paper must describe a clinical outcome

Prefiltering	
Total abstracts	10856
Abstracts/hour	8
Total prefilter hours	1357
FTEs	5
Actual prefilter hours	271.4
Actual prefilter weeks	6.8
Actual prefilter months	1.7
Total months	1.0

Annotation	
avg accept %	19.26%
tota abs to annot	1426
papers/hr for annot	2
hrs of work	713
days of work	89
FTE	5.00
Total days @5 FTE	17.83
Total weeks @5 FTE	3.57
Total months @5 FTE (Projected)	0.89
Total months actual	1.0

Gene	Status	Abstracts	Post-filter	%retained
ERBB2	Clinical, IP issues	1382	126	9
APC	Clinical	1167	86	7
CEBPA	Clinical	1108	26	2
CDKN2A	Clinical, V2 inf	1080	191	18
MYC	Clinical, V2 inf	956	9	1
ATM	Clinical	731	136	19
GSTP1	Clinical	584	166	28
ABCB1	Clinical	552	220	40
VHL	Clinical	497	16	3
ESR1	Clinical	471	47	10
CYP2D6	Clinical	323	52	16
ABL1	Clinical	315	20	6
CYP19A1	Clinical	283	25	9
RB1	Clinical	275	58	21
UGT1A1	Clinical	243	25	10
DPYD	Clinical	220	42	19
NOTCH1	Clinical, Prognostic	147	21	14
CDA	Clinical	130	30	23
TET2	Clinical, Prognostic	85	22	26
ABCC2	Clinical	82	36	44
MPL	Clinical	81		17
FGFR4	Clinical, Prognostic	53	27	51
ASXL1	Clinical	46	29	63
MYD88	Clinical	45	2	4
total		10856	1426	19.3%

Variant classification description

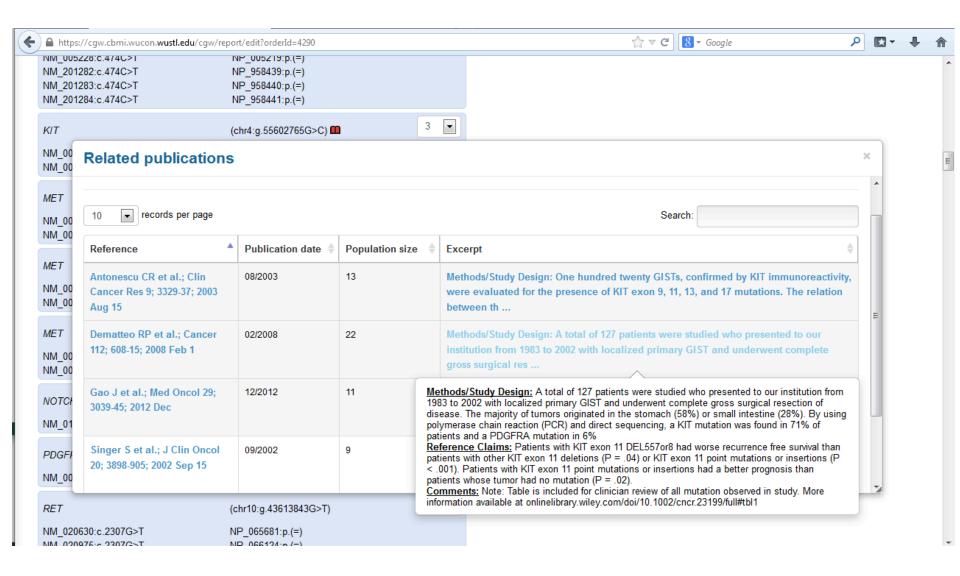
- Level 1 Predictive or prognostic in tumor type (includes inherited cancer susceptibility variants).
- Level 2 Predictive or prognostic in other tumor type(s).
- Level 3 Reported in cancer or other disease.
- Level 4 Variant of unknown significance.
- Level 5 Known polymorphism.

Variant Classification-1

- Incorporate genomic annotation data to classify variants
 - Chromosome, Gene, mRNA, Protein (NCBI/Ensembl)
 - HGVS nomenclature
 - Consequence (Non-synonymous, Synonymous, etc.)
 - Variant Type/Subtype (Substitution, Indel, etc.)
 - Annotation databases- dbSNP, COSMIC, ClinVar, HGMD, NHLBI ESP, etc.

Variant Classification-1

- Classification strategies and rules
 - Classify SNPs using rules on dbSNP, 1000 Genomes, and NHLBI
 ESP
 - Classify clinically important variants using clinical tags in dbSNP (OM, CLN, MUT, CDA) and/or using databases such as ClinVar and HGMD
 - Classify disease variants and genes using OMIM or HGMD
 - Classify possible disease causing variants by identifying nonsynonymous variants or those that affect splicing
 - Classify possible disease causing variants using in silico predictions (e.g. Condel, SIFT, Polyphen)
 - Classify clinically relevant variants using patient's phenotype(s)


Classification rules (automated)

- If a VariantCall has no other interpretations, but has COSMIC source then classification 3
- If a VariantCall has no other interpretations, but has dbSNP source and (clinical assertions (OM MUT CDA) OR source=ClinVar), then put in class 3
- If a VariantCall has no other interpretations, but has dbSNP source and flags for polymorphism (COMMON=1) but NO (clinical assertions (OM MUT CDA) OR source=ClinVar) then put in class 5
- If a VariantCall has MAF >= 1 for All in NHLBI ESP database, then put in class 5
- If a VariantCall has no other interpretations then set class 4

Variant Classification-2

- Complex decision making using the patient, variant, and variant call fact model
- Variant
 - Gene, mRNA, protein coordinates
 - g, c, p syntax
 - Domains and other functional annotations
 - External variant annotation databases
 - Variant type
- Variant Call
 - Quality criteria
- Patient
 - Disease
 - Drug
 - Phenotype(s)

Variant Classification to interpretation

Example of rules-based variant filtering

- An <u>in frame deletion</u> in <u>exon 11</u> of *KIT* in <u>GIST</u> responds well to imatinib
 - If deletion AND
 - Consequence is non-synonymous AND
 - p syntax NOT frameshift AND
 - Start and end coordinates in exon 11 of KIT AND
 - Patient clinical indication is GIST THEN
 - Infer interpretation

Example of rules-based variant filtering

- An <u>in frame deletion</u> in <u>exon 11</u> of *KIT* in <u>GIST</u> responds well to imatinib EXCEPT if there are <u>secondary</u> mutations in <u>exons 13</u>, <u>14</u>, 17, or 18
 - If deletion AND
 - Consequence is non-synonymous AND
 - p syntax NOT frameshift AND
 - Start and end coordinates in exon 11 of KIT AND
 - NOT Any non-synonymous variant in KIT in exons 13, 14, 17, or 18
 - FOR each variant called in this specimen:
 - Consequence is non-synonymous AND
 - Start and end coordinates in exon 13 OR 14 OR 17 OR 18 of KIT
 - Patient clinical indication is GIST THEN
 - Infer interpretation

Actionability

- 1. Practice guidelines for the genetic condition exist
- Professional society practice guidelines recommends action in
 - patient management
 - surveillance or screening
 - family management
 - circumstances to avoid
- 3. Medical interventions based on new results are effective
- 4. Actions are acceptable to individual in terms of burdens or risks

Cancer Panel Initial Findings

- ~1500 clinical tests ordered since March, 2012 (does not include clinical trials)
- ~45% of sequenced cases have specific 'actionable' mutations in targetable genes including *KRAS*, *EGFR*, *KIT*, and *PIK3CA*.

Presentation of the results

Washington University School of Medicine in St. Louis

Clinical Genomics

Department of Pathology and Immunology Phone: 314.454.8101; Fax: 314.454.5192 p://cytogenomics.wustl.edu http://clinicalgenomics.wustl.edu CLIA #26D0698685: CAP# 27556-03

Name:
Gender:
Hospital #:
Date Collected:
Date Accessioned:
Date Ordered:

Physician(s):

Processing:
Indication:
Specimen Quality:

GENOMIC SEQUENCING

TREATMENT REFRACTORY SET

Summary

A 15bp, in-frame exon 19 deletion was detected in *EGFR*, and is predicted to be sensitive to EGFR-inhibitors (Mitsudomi T; J Clin Oncol; 2513-20; 2005 Apr 10) (Kosaka T; Cancer Res; 8919-23; 2004 Dec 15). This deletion was confirmed by Sanger sequencing, and has been previously reported by indpendent testing (see S11-51638).

A nonsense mutation in exon 1 of the tumor suppressor *PTEN* (p.Q17*) was identified, which has been reported in other tumor types; this mutation is of unknown clinical significance. The allele frequency of this mutation suggests that it may be homozygous in the tumor tissue.

The identified *TP53* (p.R116Q) single base substitution has been previously reported in non-small cell lung carcinoma, and is of unknown clinical significance.

Unique sequence variants of unknown significance are reported below. The sequence analysis and interpretations were reviewed by Drs. C , who concur.


Pathologist review (performed by) of an H&E stained section of the tissue block was used to guide microdissection of areas of viable tumor by the Washington University AMP Core Labs. DNA was extracted from the areas of viable tumor for sequence analysis. The technical component of the testing passed all established laboratory QC metrics except exon 2 of *DNMT3A*, exon 1 of *MAP2K2*, exon 1 of *MAPK1*, exon 1 of *KRAS*, exon 1 of *RET*, exon 1 of *WT1*, where variants may not have been reliably detected.

Challenges and approaches

Challenges and Opportunities

- Interpretation of genomic data is difficult and labor intensive
 - A blend of algorithmic and knowledge-based variant curation methods necessary for clinical interpretation
 - Annotating and keeping up with variant management is expensive
 - Variants need to be linked with clinical outcomes
- Urgent need for implementation of universal standards and variant resource databases
 - Clinical Genome Resource (ClinGen)
 - High level inventory of key aberrations in cancer with clinical correlation does not exist

Karen Seibert, John Pfiefer, Skip Virgin, Jeffrey Millbrandt, Rob Mitra, Rich Head Rakesh Nagarajan and his Bioinf. team David Spencer, Eric Duncavage, Andy Bredm. Hussam Al-Kateb, Cathy Cottrell Dorie Sher, Jennifer Stratman Tina Lockwood, Jackie Payton Mark Watson, Seth Crosby, Don Conrad Andy Drury, Kris Rickhoff Mike Isaacs and his IT Team Norma Brown, Cherie Moore, Magie O Guin, GTAC team Jane Bauer and Cytogenomics & Mol path team **MANY MORE!**