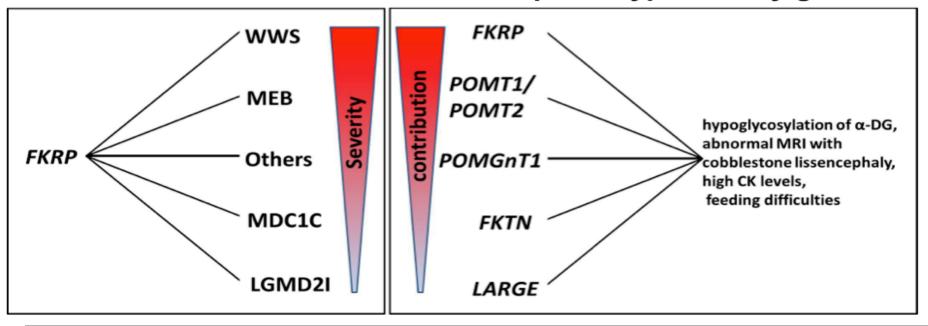


Evidence collection for standardizing genomic testing

Madhuri Hegde, PhD, FACMG
Professor
Executive Director, Emory Genetics Laboratory
Emory University



The growing complexity...

1 gene – varying phenotype

Similar phenotype – Many genes

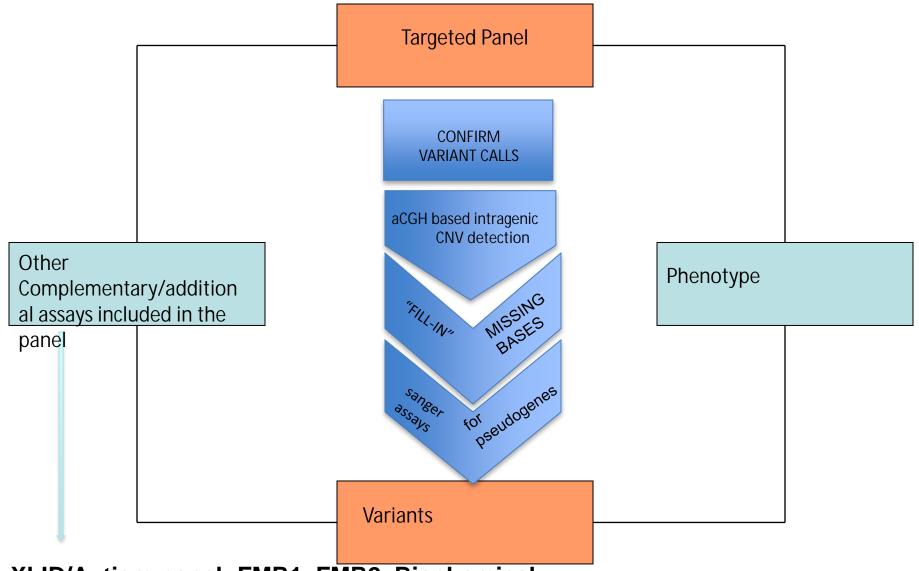
CMD Form	Genes
Subtypes involving structural/extracellular matrix protein defects	COL6A1, COL6A2, COL6A3, LAMA2, ITGA7, ITGA9,
Subtypes involving glycosylation defects	FKTN, LARGE, FKRP, POMT1, POMT2, POMGnT1, DPM2, DPM3, GTDC2, ISPD
Subtypes involving nuclear envelop protein defects	LMNA, SYNE1
Rigid spine syndrome associated	SEPN1, FHL1
Mitochondrial	СНКВ

Targeted mutation and Sequencing panels:

Clinically well defined cases

Technically complete:
Cover all exons of a gene

Covers entire mutation spectrum of the gene: Point mutation, indels, CNVs, deep intronic pathogenic variants Exome (Medical exome VS Research exome)


Complex/overlapping phenotypes or neg. for known genetic causes

<25% known clinically relevant genes

Technically incomplete: Does not cover all exons

Does not cover entire mutation spectrum of genes

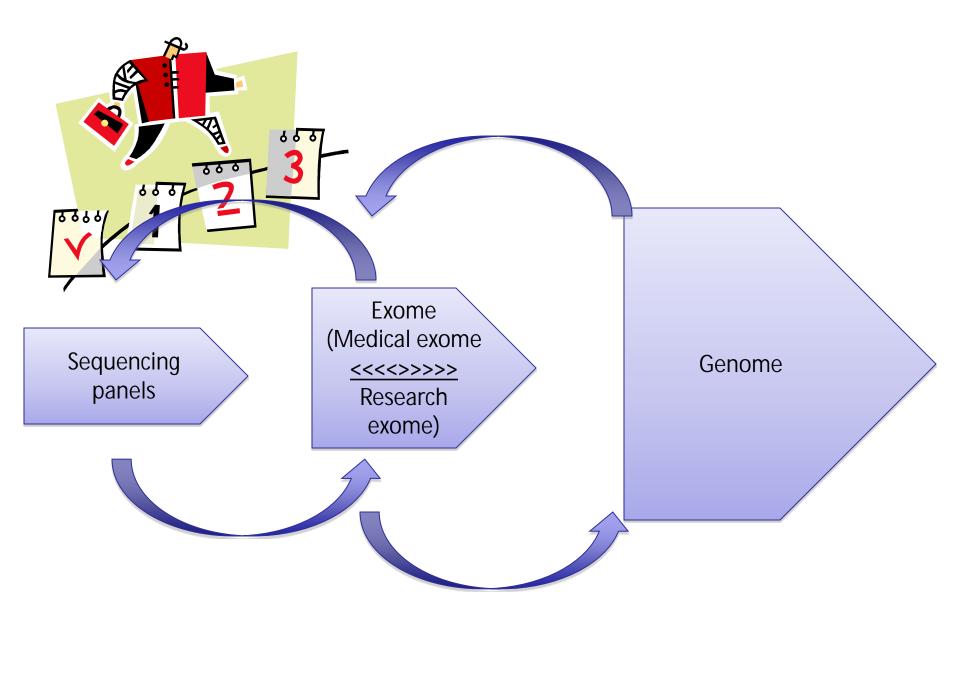
Genome

XLID/Autism panel: FMR1, FMR2, Biochemical

assays

Short stature panel: Russell Silver

(H19/Lit1 methylation), UPD7


NMD panel: FKTN insertion assay

Chin et al, BMC Genetics, 2012, Askree et al, BMC Genetics, 2013, Valencia et al, J Mol Diag, 2013, Valencia et al, PLoS One, 2013

Diagnostic yields of the different NMD clinical tests

Clinical test ordered	No. of tests with diagnosis / No. of tests performed	Diagnostic yield (%)
CMD single gene testing	28/185	15
CMD COL6A sub panel	12/58	21
CMD comprehensive panel	26/75	35
LGMD single gene testing	82/312	19
LGMD comprehensive panel	18/61	30
NMD comprehensive panel	14/22	63

- Panel tests show consistently high clinical yield (> 5 fold) over single gene tests.
- LAMA2 and FKTN are major contributors to CMDs or at least have better diagnostic yield.
- Panel testing should be preferred over single gene testing for heterogeneous diseases like CMDs.

EMORY GENETICS EMEXOME Clinical Exome testing

Exome

Complex/overlapping phenotypes or neg. for known genetic causes

<25% known clinically relevant genes

Technically incomplete: Does not cover all exons

Does not cover entire mutation spectrum of genes

GENE DISCOVERY: Collect evidence

Diagnost

New prese

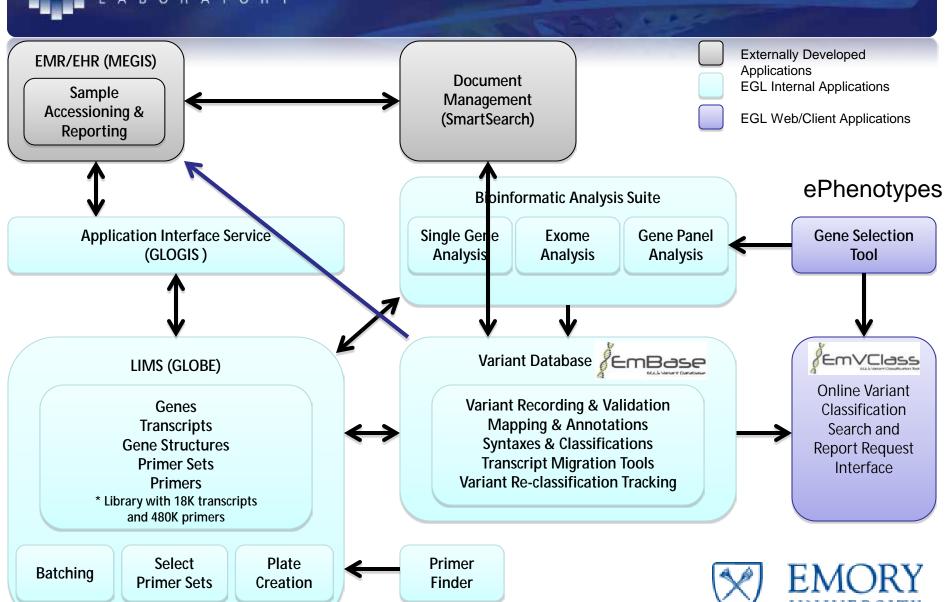
geries

- •~30-40% yield
- Clinically interpretable
- Clinically Actionable

markers

Targets known mutations

al exome


\$\$\$\$

EMORY GENETICS LABORATORY

High Level System Diagram

Bean et al, Hum Mutat, 2013

Your partner in genetic healthcare

Home Test Search Test Ordering

→ Billing
→ Client Services
→ About EGL
→ Resources Contact Us

EGL News Updates

EGL Partners With Verinata to Offer Non-Invasive Prenatal Screening Emory Genetics Laboratory Expands Its International Footprint EGL Supports "Free the Data" Movement in Recent Publication

Coming Fall 2013

BRCA1 and BRCA2
sequencing and
deletion/duplication
analysis
click here to learn more

SAVE TIME

Order Testing __Online__

click to learn more

EmExome:

Whole Exome Sequencing

- ★ Three levels of service
- ★ Interactive variant classification tool
- ★ Sanger confirmation of clinically actionable changes

Click here to learn more about EGL's EmExome services

EmExome

Autism Disorders

Neuromuscular Cancer

Next Generation Sequencing

QUICK LINKS

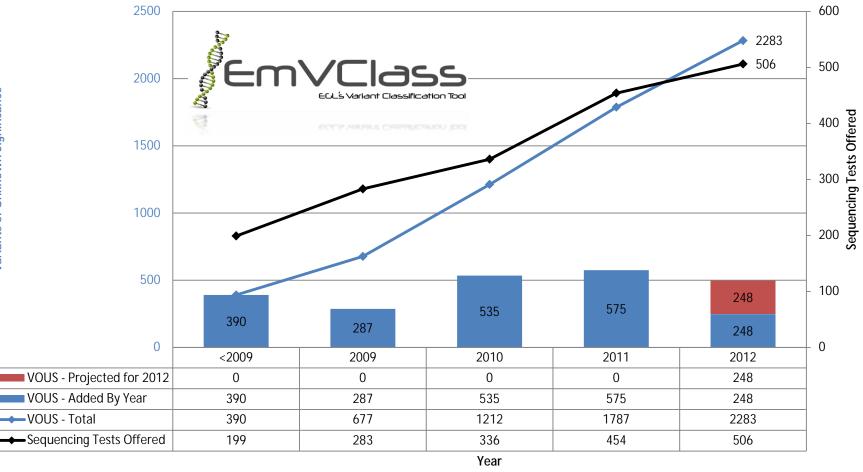
- Click Here to Learn About Recent Changes to Medicaid Coverage
- Requisition Forms
- Order Mailing Kits
- Request Insurance Verification
- Guide to Shipping Specimens
- Sample Submission Guidelines
- Prenatal Testing
- New Test Updates
- Discontinued Tests

DIRECTOR SPOTLIGHT

Dr. Christin Collins PhD, FACMG

Dr. Christin Collins is an Assistant Professor in the Department of Human Genetics and is a Molecular Laboratory Director at Emory Genetics Laboratory.

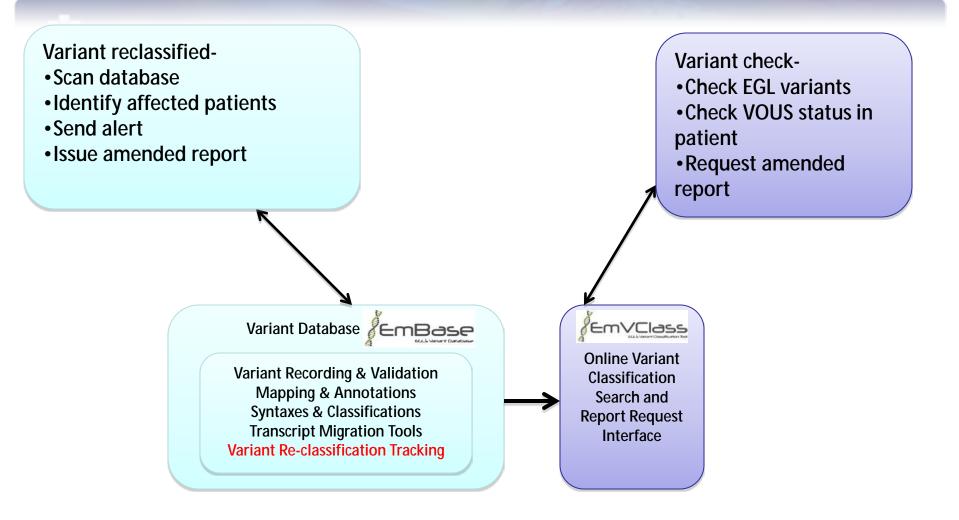
Click here to learn more about Dr. Collins' background


EGL's Variant
Classification Catalog

Get up-to-the-date status updates on all variants that have been seen and analyzed by EGL

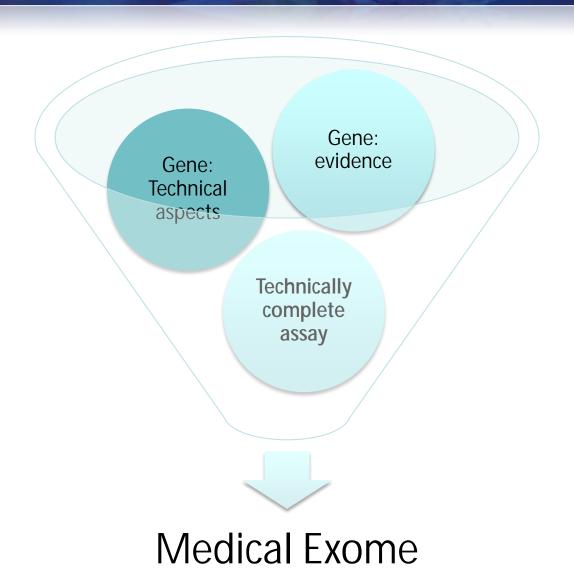
click here

Variants of Unknown Significance Added To EmBase by Year In Relation to Number of Sequencing Tests Offered



Updating new knowledge on a variant

ACMG 2007 Guidelines: The testing laboratory should make an effort to contact physicians of previously tested patients in the event that new information changes the initial clinical interpretation of their sequence variant.


Reclassification Alert strategy

Finishing the exome.....

just "because three is better than one" CHOP Emory Harvard LMM

Medical Exome

A highly curated gene resource and a technically optimized assay to provide a stepping stone for standardizing interpretation of genetic variation to fulfill the promise of genomic medicine

THE MEDICAL EXOME PROJECT

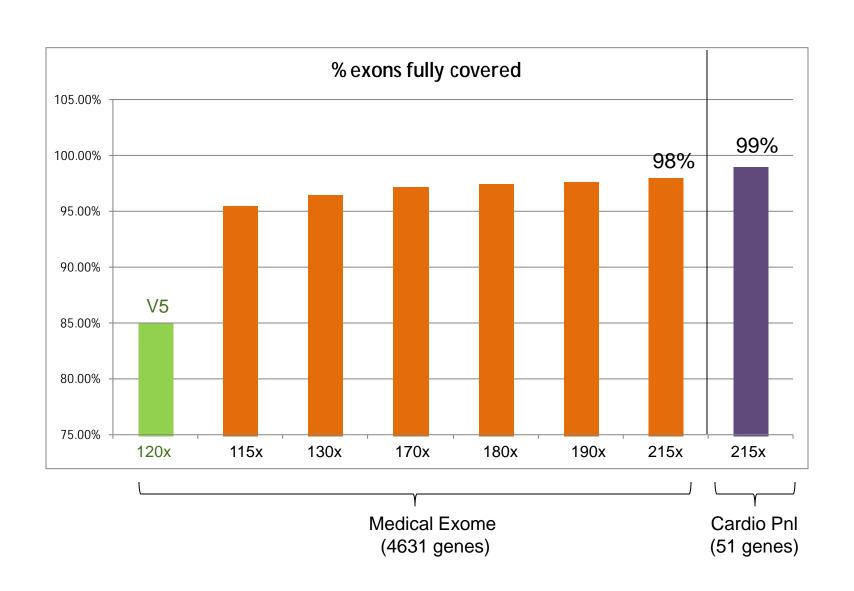
FOUNDERS

- Emory Genetics Laboratory *Madhuri Hegde*
- Children's Hospital of Philadelphia Avni Santani
- Harvard/Partners Lab for Molecular Medicine Birgit Funke

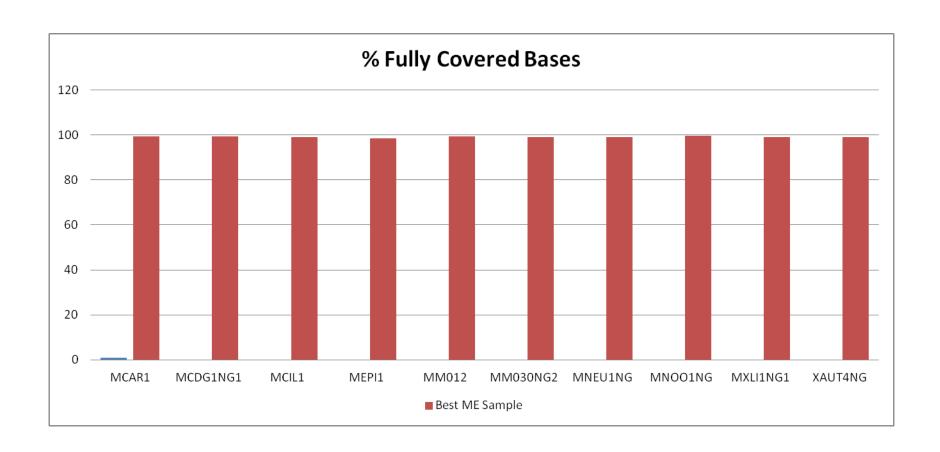
HELP STANDARDIZE MEDICAL EXOME SEQUENCING

- Develop a "medically enhanced exome" capture kit (<u>all clinically significant genes</u> adequately covered) + develop ancillary assays (pseudogenes, CNV detection, repeat regions, epigenetic assays)
- Define medically relevant genes + develop framework for iterative curation
- Support and integrate with evidence-based curation led community efforts
 - Ledbetter/Martin/Mitchell/Nussbaum/Rehm (U41)
 - Berg/Evans/Ledbetter/Watson (U01)
 - Bustamante/Plon (U01)
 - ClinVar Database (NCBI)

ClinGen

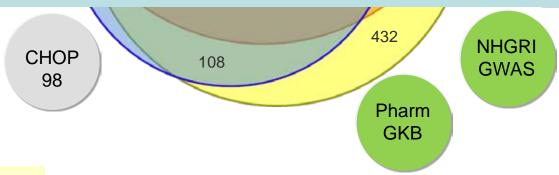

BASE LINE DATA (AGILENT V5)

HISEQ 2500 rapid run; 100x average cov (4-5 samples/ln)


	Whole Exome (all genes)	Medically relevant genes (4631)	Cardiomyopathy Pnl (51)
bases < 20x	5.8% 2.3 Mb / 45 Mb	4.6% 326 Kb / 10.7 Mb	3.7% 9 Kb / 262 Kb
■ Fully covered ■ Well covered ■ Mostly covered ■ Lightly covered ■ Not covered fully cov. exons (100% ≥ 20x)	3% 4% 12% 75%	3% 3% 7% 82%	2% ~ 3%

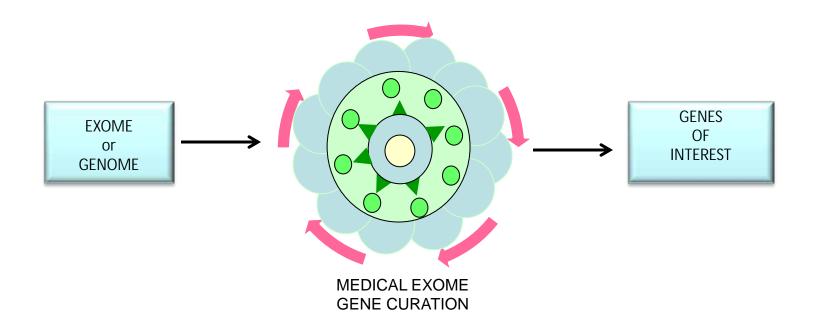
LMM Agilent v5-PLUS

HISEQ 2500 rapid ; 4-5 samples/lane


Performance of Additional Gene Panels (EGL) (V5+ Exome data)

DEFINING THE MEDICAL EXOME

- Start with all genes that have possible or proven disease associations
- Cast wide net
- Curate to eliminate false positive disease association claims
- Iterative curation to remain current


N = 4,371 genes

* OMIM - Morbid Map only

PROPOSED GENE CLASSIFICATION CRITERIA

EVIDENCE LEVEL	DESCRIPTION	CRITERIA
0	1	Undetermined: No reported evidence
0	available) or unlikely significance	Unlikely: Evidence arguing against role in disease
	Gene of "Uncertain Significance"	Single or few studies, variants, and families reported AND segregation
1	(studies available, but insufficient to	not established OR No human studies reported but strong animal model
	draw conclusions)	data with relevance to human disease
2	Drobably discose associated	Single or few studies, variants, and families reported AND limited
	Probably disease associated	segregation observed
3 D	Definitively established discoses seen	Multiple studies, variants, and families reported AND significant
	Definitively established disease gene	segregation and/or strong functional evidence

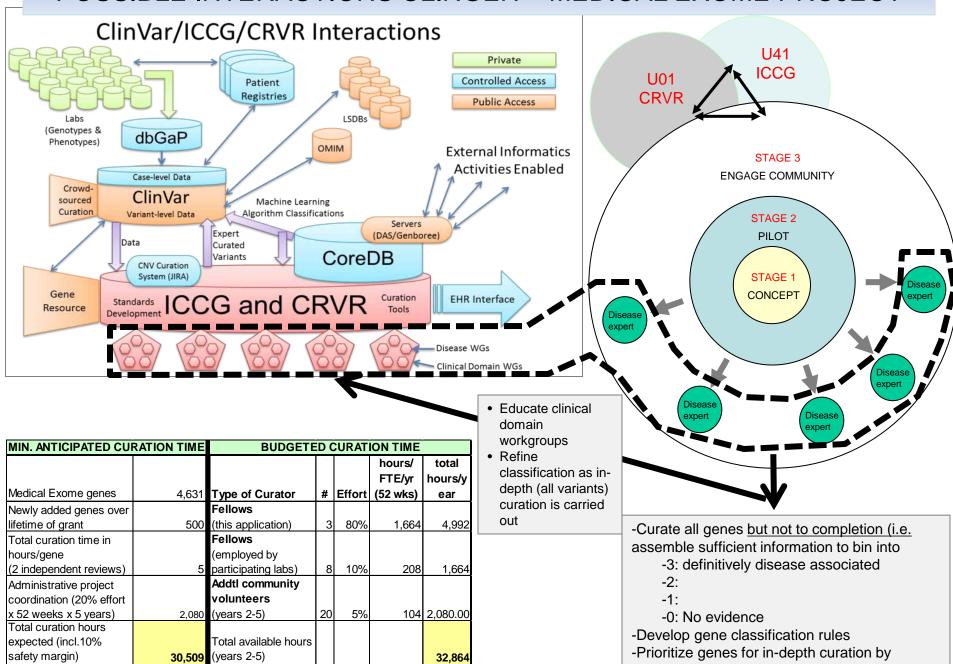
PILOT CURATION

Many incorrect variant/gene and gene/disease associations

Dilat curation	MEDIO			
Pilot curation		YES+		% NOT
	TOTAL	MAYBE	NO	RELEVANT
PILOT GENE SET	535	429	106	20%

RELATED EFFORTS

					NOT ON	MED EX (V1)
PUBLSISHED STUDY	PMID	DESCRIPTION	# GENES	MED. EX. Not on published	not present	reviewed but excluded due to lack of evidence
Medical Exome v1		Unique genes with disease associations added and crossreferenced from 12 publically available databases and from curated gene lists from LMM, CHOP, and EGL	4631			
ICCG	Rehm and Martin, pers. comm.	Curated dosage-sensitive genes only (as of 01/29/14: 215 haploinsufficient, 3 triplosensitive)	218	N/A		
Boone et al. 2013	22878507	Identified all phenotypes in OMIM with associated disease gene and determined the inheritance pattern for each causal gene. Intersected with large aCGH results database.	1747	2884	1	
Berg et al. 2012	22995991	Using the OMIM database, identified 2016 genes associated with Mendelian disorders and grouped them into "bins" based on clinical utility and validity	2016	2615	0	
Solomon et al. 2013	23696674	Curated OMIM for conditions with established genetic causes, and cross- referenced entries with HGMD, PharmGKB, GeneTests, and published literature.	2616	2057	42	
Koopman et al. 2012	22435372	Used OMIM, Reactome, Genecards, KEGG, UniProtKB, and MITOMAP to establish a comprehensive list of nuclear and mitochondrial genes associated with monogenic mitochondrial disorders	264	4368	1	
Illumina TruSight One	N/A	Gene panel based on HGMD, OMIM, GeneTests, and a variety of custom panels (Illumina TruSight and other commercially available panels)	4812	635	128	688


JIRA - GENE CURATION DATABASE

- JIRA Freely available and centralized database of curated genes
- Pilot phase: Collaboration started with Deanna Church at NCBI, now managed by Melissa Landrum
- Expert driven gene curation Capture evidence associating each gene to a disease
- Goal of the pilot phase Mature curation interface and establish a robust workflow for gene curation
- Long term goals
 - Engage genetics community and invite open collaborations
 - Resource for clinical and research laboratories
 - Complement existing efforts such as ClinGen, ClinVar and ICCG
 - Support variant interpretation and improve patient care

ANNOTATING GENES

	SUMMARY SECTION	
	ated diseases with level 1(gene of uncertain significance) • Animal models with human disease phenotype (Y/N)	
	Classification by disease Classification by disease	
Number of ass Medically acti	·	
ICCG haploin	Disease 1	
A. Outology to a	- Mode of inheritance (multiple if appliccable)	
A - Ontology to e	- Typical age at onset	
OMIM disea Indicate if no	- Penetrance	
indicate if no	- Prevalence and expressivity	
B - Basic gene fu Alternate nam	- Mosaicism reported?	
Entrez ID	- Ethnic/racial preponderance (e.g. Ashkenazi Jewish)	
Chromosome Cytogenetic be	- Medically actionable (Y/N) + free text	
Genomic coor	- Molecular mechanism (gain of function, loss of function)	
# unique exon	- Variant spectrum (note if do novo mutations are common)	
# transcripts List of transcri	•	
Protein type (s	- Classificaton (disease 1) - Evidence (disease 1) Need to read papers	
 Protein functio 	- Evidence (disease 1) Need to read papers	
Known proteiSummary of k	PMID1	
 Summary of n 	1. # subjects tested	
 Expression – ε Expression – ε 	2. # affecteds carrying a (potentially) significant variant	
Pathways (?m	3. # of variants reported in this paper showing segregation – range 1	
Tolerance to v	4. # of variants reported in this paper showing segregation – range 2	
	5. # of variants supported by in vitro fx data	
· Summary of v.	6. # of variants supported by in vivo fx data	
Gene regions cImprinted gen	7. Other annotations TBD	
Presence of ps	PMID2	
· Clinical Genor	Same fileds as above	
· OMIM	Disease 2	
ClinVar GeneCards	Same fileds as above	
· GeneReviews	· noind	
· LSDBs	· LOVD	
 UCSC, ENSEMBI 	BL Jackson Lab MGI database	

POSSIBLE INTERACTIONS CLINGEN - MEDICAL EXOME PROJECT

