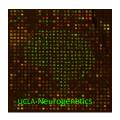
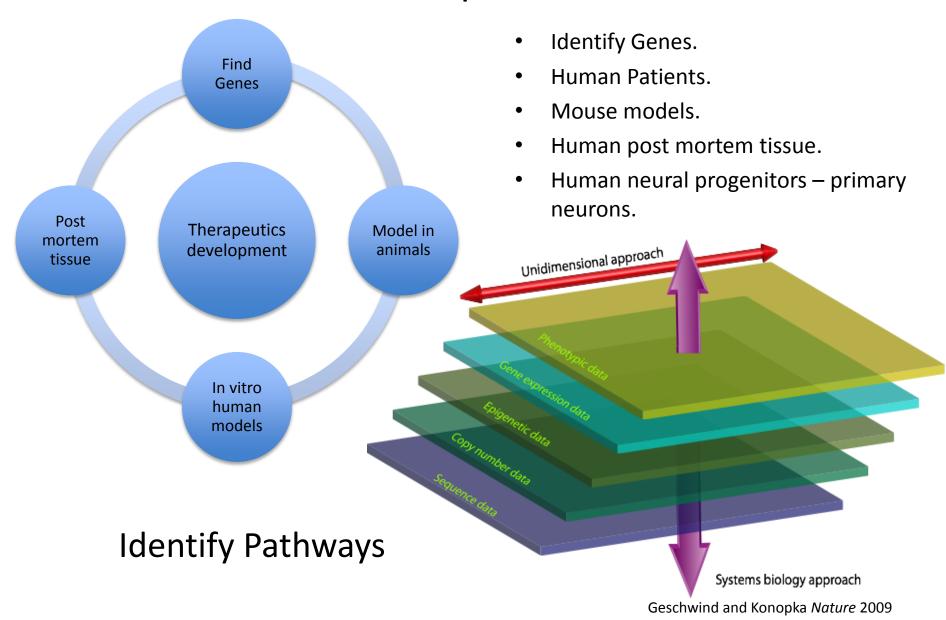


IOM Genomics Roundtable Workshop

December 3, 2012


Daniel H Geschwind, MD PhD

Departments of Neurology, Psychiatry and Human Genetics

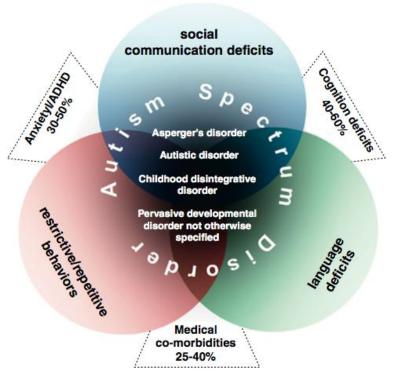

David Geffen School of Medicine, UCLA

Approach: Moving from Genes to Pathways to Therapeutics

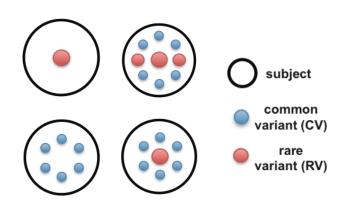
Complexity in neuropsychiatric disorders

AUTISM SPECTRUM DISORDER (ASD) is a prototypical example

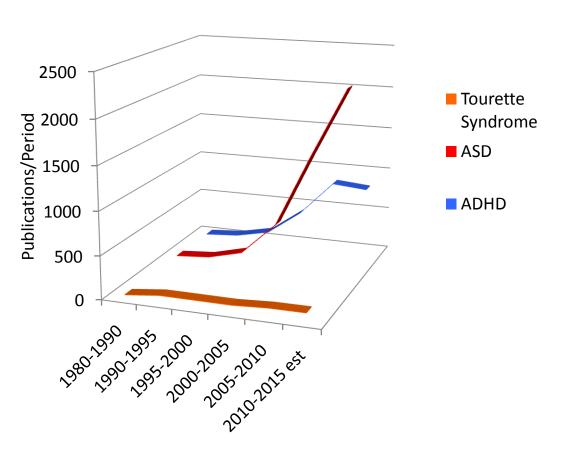
Phenotypic


- Disorder Overlap
- Endophenotypes

Etiologic


- SNPs, SNVs, CNVs
- Epigenetics
- Environment
- Interactions (GxE, GxG)

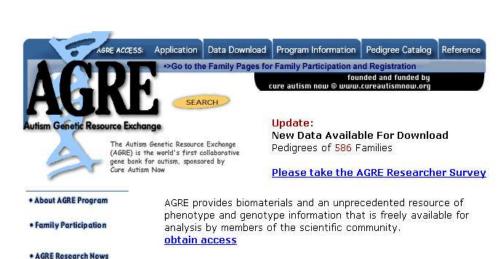
Biological pathways


- Molecular
- Cellular
- Circuits
- Behavioral/Cognitive

Devlin and Scherer Curr Opin Genet Dev, 2012

Progress in Understanding ASD Biology

- Genetic variants
 accounting for about 20%
 of ASD have been
 identified (de novo).
- Several variants have been studied in human brain to understand circuit level dysfunction..
- Mouse models have been made to understand synapses, cells, circuits.
- In vitro models in IPSCs have been developed.
- Several new pharmacological treatments are in early trials


Build it and they will come?

Create a Large, Open Resource

Autism Genetic Resource Exchange

- An open resource shared with the scientific community
- More than 1300 families AND 10,000 DNA samples
 - Greatly accelerated the pace of family collection and research.
 - >330 researchers and 200 publications since 2001!
- Phenotype data:
 - ADI-R, ADOS
 - basic cognitive and language testing
 - physical/neuro exams
 - medical histories
- Biomaterials and Data (Karyotyping/molecular cytogenetics/SNP data).

AGRE Frequently Asked Questions

Answers to commmon questions about AGRE.

ISAAC User Guide:

A step-by-step guide for downloading phenotype data from ISAAC.

GENOTYPE DATA:

Whole Genome Scan and Finemapping data on 356 families. Candidate Gene and Loci Data contributed by Dr. Buxbaum

NEW! Candidate SNP Genotyping data

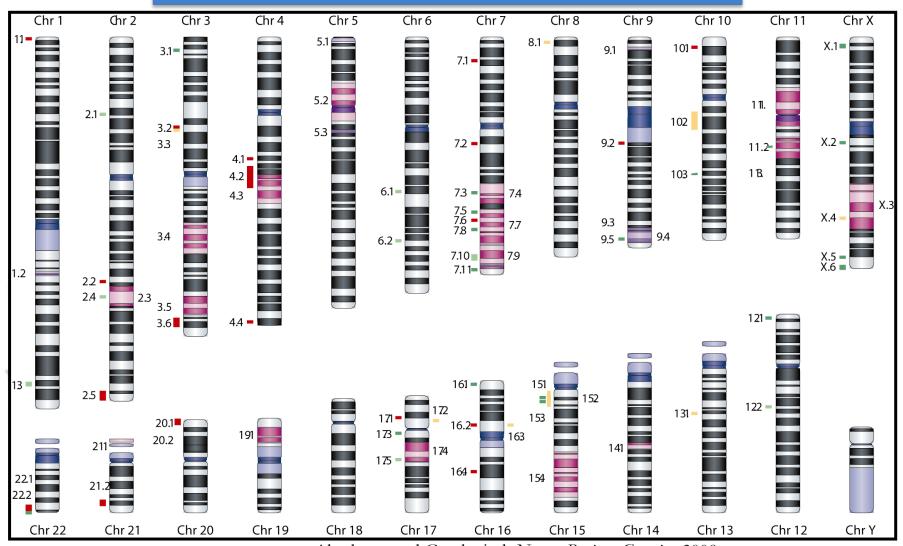
contributed by Dr. Sutcliffe

NEW! Finemapping data on Chr.5 and Chr.17

contributed by Dr. Nelson

. Contact AGRE Program

Site Map/Index


Autism Genetic Resource Exchange (AGRE) A collaborative genebank to

PHENOTYPE DATA:

ADI-R, ADOS, Raven, and Handedness testing results with all interview data points and computer scored algorithm results are available for download.

Medical histories, Physical Neurological exam data, Peabody scores, and Vineland scores are also available.

Progress in Genetics

Abrahams and Geschwind, Nature Reviews Genetics, 2008

De novo mutations revealed by whole-exome sequencing are strongly associated with autism

Stephan J. Sanders¹, Michael T. Murtha¹, Abha R. Gupta^{2*}, John D. Murdoch^{1*}, Melanie J. Raubeson^{1*}, A. Jeremy Willsey^{1*}, A. Gulhan Ercan-Sencicek1*, Nicholas M. DiLullo1*, Neelroop N. Parikshak3, Jason L. Stein3, Michael F. Walker1, Gordon T. Ober1, Nicole A. Teran¹, Youeun Song¹, Paul El-Fishawy¹, Ryan C. Murtha¹, Murim Choi⁴, John D. Overton⁴, Robert D. Bjornson⁵,

Katl

Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations

Brian J. Neuron

Joshua l Elhanar

- Simons Simplex Collection
- **AGRE**
- Estimate 500-1000 de novo mutations.
- Mean effect size = 6

De Novo Gene Disruptions in Children on the Autistic SI F

Ivan Iossifov, 1,6 Michael Ronemus, 1,6 Yoon-ha Lee,1 Giuseppe Narzisi,1 An

Linda Rodgers,¹ Asya Stepansky,¹ Jt Patterns and rates of exonic de novo mutations in Melissa Kramer,¹ Jennifer Parla,¹ Rya Jennifer C. Damell, Robert B. Dame W. Richard McCombie, and Michael autism spectrum disorders

Benjamin M. Neale^{1,2}, Yan Kou^{3,4}, Li Liu⁵, Avi Ma'ayan³, Kaitlin E. Samocha^{1,2}, Aniko Sabo⁶, Chiao-Feng Lin⁷, Christine Stevens², Li-San Wang⁷, Vladimir Makarov^{4,8}, Paz Polak^{2,9}, Seungtai Yoon^{4,8}, Jared Maguire², Emily L. Crawford¹⁰, Nicholas G. Campbell¹⁰, Evan T. Geller⁷, Otto Valladares⁷, Chad Schafer⁵, Han Liu¹¹, Tuo Zhao¹¹, Guiqing Cai^{4,8}, Jayon Lihm^{4,8}, Ruth Dannenfelser³, Omar Jabado¹², Zuleyma Peralta¹², Uma Nagaswamy⁶, Donna Muzny⁶, Jeffrey G. Reid⁶, Irene Newsham⁶, Yuanqing Wu⁶, Lora Lewis⁶, Yi Han⁶, Benjamin F. Voight^{2,13}, Elaine Lim^{1,2}, Elizabeth Rossin^{1,2}, Andrew Kirby^{1,2}, Jason Flannick², Menachem Fromer^{1,2}, Khalid Shakir², Tim Fennell², Kiran Garimella², Eric Banks², Ryan Poplin², Stacey Gabriel², Mark DePristo², Jack R. Wimbish¹⁴, Braden E. Boone¹⁴, Shawn E. Levy¹⁴, Catalina Betancur¹⁵, Shamil Sunyaev^{2, 9}, Eric Boerwinkle^{6,16}, Joseph D. Buxbaum^{4,8,12,17}, Edwin H. Cook Jr¹⁸, Bernie Devlin¹⁹, Richard A. Gibbs⁶, Kathryn Roeder⁵, Gerard D. Schellenberg⁷, James S. Sutcliffe10 & Mark J. Daly1,2

doi:10.1038/nature11011

"The Autisms": Many Genetic Syndromes ("the 1%s"), None Specific.

Table 23.4.2 ASD-related syndromes^a (modified from [3])

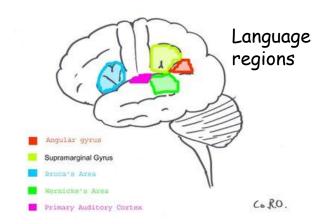
ASD-related syndrome	Associated gene(s)	Proportion with ASD	Proportion ASD with syndrome	References
1q21 Duplication	Many	50%	~1%?	[91, 128]
3p Deletion / duplication	CNTN4	< 50%	~1%	[51, 61, 110]
15q Duplication (maternal)	Many (including UBE3A, GABRB3, SNRPN, and SNURE)	High	~1%	[41]

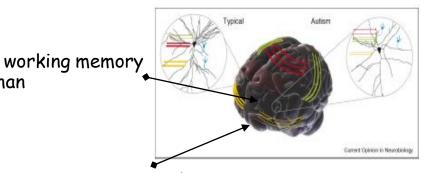
Review

uupiicuuoii(17p11)

Trends in Cognitive Sciences September 2011, Vol. 15, No. 9

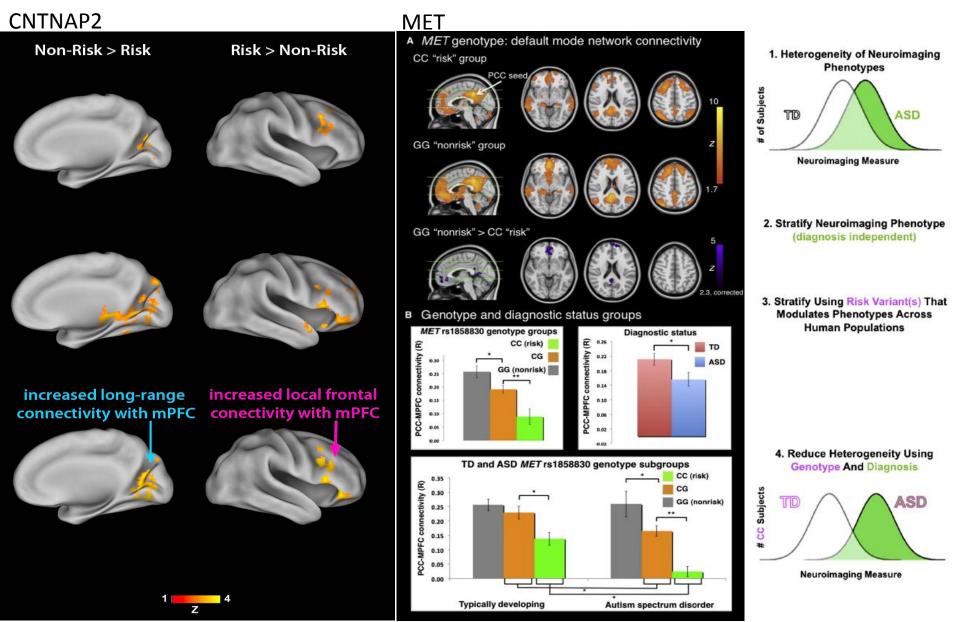
Table 1. Pleiotropic effects of major genes/mutations associated with ASD and allied neurodevelopmental disorders


Gene/region	Mechanism	Disorders	References
NRXN1	CNV, PM	ASD, SZ	[36], [50,72,73]
CNTNAP2	CNV, PM, CP	ASD, ID, epilepsy, LD/SLI, TS	[59,61,74,75]
16pdel	CNV	ASD, SZ, DD, LD, normal carrier	[33,37,42,76-78]
16pdup	CNV	SZ, ID, DD, LD, ADHD, normal carrier	[33,39,42,78]
15q13.3del	CNV	SZ, epilepsy, ASD, normal carrier	[42,73,79]
17q12del	CNV	SZ, ASD, ID	[80]
15q11–13dup	CNV	ASD, SZ/psychosis	[33,81]
22q11	CNV	ASD, ADHD, SZ, ID, epilepsy	[73,82–84]
1q21	CNV	ASD, SZ, ID, epilepsy	[42,85,86]

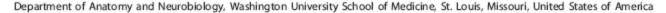

Here we list genes, form of genetic risk variant, clinical disorders where the mutation has been observed, and some representative references. This table is not meant to be exhaustive but illustrative of the pleiotropic effects of known ASD genes or loci with relatively large effect sizes (OR > 5–10 for ASD). New abbreviations are as follows: TS, Tourette syndrome and PM, point mutation.

Smith-Lemli-Optiz (11q13)	DHCR7 °	50%	Negligible	[129]
Prader-Willi (15q11-13)	Paternal deletions	20-25%	Unknown	[45]
Rett (Xq26)	MECP2	N/A	~0.5%	[5]
Timothy syndrome (12p13)	CACNA1C	60-80%	Negligible	[120]
Tuberous sclerosis (9q34 and	TSC1, TSC2	20%	~1%	[10]
16p13)		Abral	hams and Geschwind	Vogul and Motulsky 2009

The "endophenotype" concept


- Common neurodevelopmental disorders, such as autism, SLI/dyslexia, ADHD, epilepsy, and MR are not defined based on common etiology.
- The association of genetic factors with specific, measurable components of each disease, called "endophenotypes" will be stronger than the clinical diagnosis alone.
- To be most useful for genetic analysis, endophenotypes should be:
 - Associated with the disease
 - Heritable
 - Relatively stable
 - Identified in first degree relatives more than the general population.
 - Quantifiable

Social cognition, attention, implicit learning

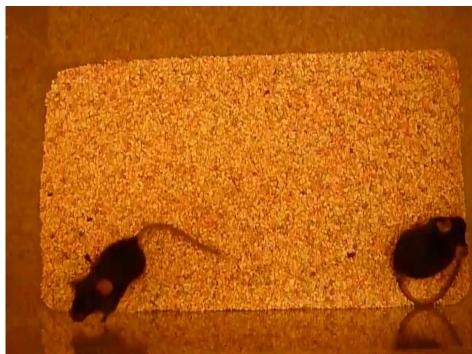

Studying ASD risk variants in humans

Rudie et al. Neuron 2012

Ultrasonic Songs of Male Mice

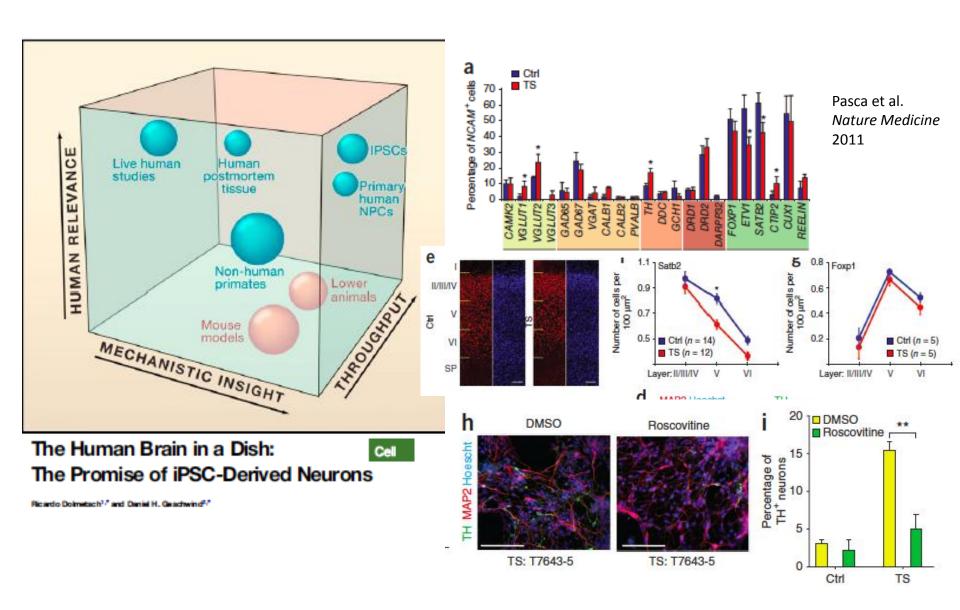
Timothy E. Holy*, Zhongsheng Guo

Previously it was shown that male mice, when they encounter female mice or their pheromones, emit ultrasonic vocalizations with frequencies ranging over 30–110 kHz. Here, we show that these vocalizations have the characteristics of song, consisting of several different syllable types, whose temporal sequencing includes the utterance of repeated phrases. Individual males produce songs with characteristic syllabic and temporal structure. This study provides a quantitative initial description of male mouse songs, and opens the possibility of studying song production and perception in an established genetic model organism.

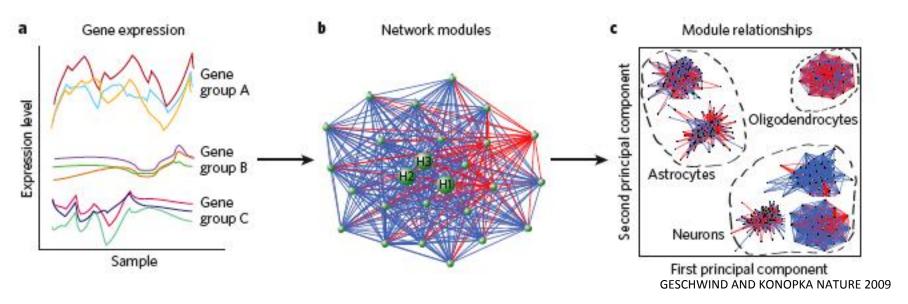

Citation: Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS Biol 3(12): e386.

Mice with CNTNAP/.CASPR2 mutations show: reduced USV reduced sociability increased repetitive behaviors increase hyperactivity increase sensory hypersensitivity

CNTNAP2 mouse knockout Treatment with Oxytocin



Olga Penagarinkaro, PhD


Opportunities:

- Understand mechanism at synapse, cell, circuit level
- Predictive validity use mouse for in vivo screening

How do we develop therapeutics?

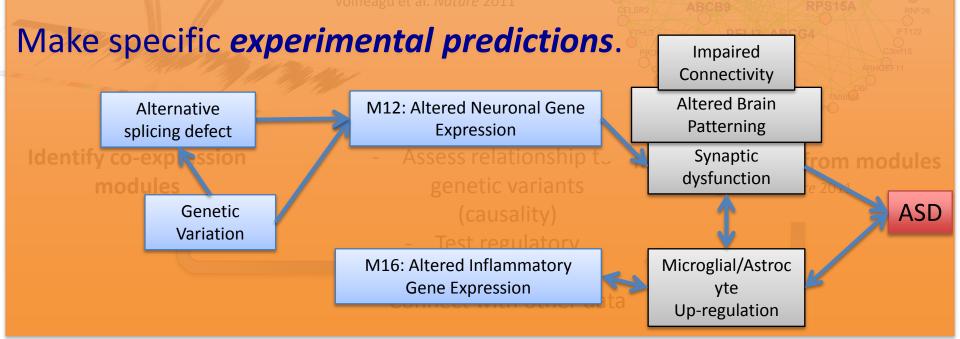
Using Network Biology to Provide an Integrated View (WGCNA; Zhang and Horvath 2005)

Network structure is robust and reproducible (it is real: Horvath et al. *PNAS* 2006; Oldham et al. *Nat Neurosci* 2008; Winden et al. 2009 *Mol Sys Biol*; Miller et al. *PNAS* 2010).

A gene's network position is biologically meaningful

We can identify groups of co-expressed genes called modules that correspond to key elements of biological function (Oldham et al. 2006; Oldham et al. 2008; Winden et al. 2009).

And within modules, we can identify the most central, "hub" genes (Horvath et al. 2006; Oldham et al. 2008, Winden et al. 2009).

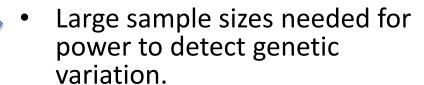

This structure serves as a basis for identification of biological meaningful insights

- •Comparative network analysis modules
- Comparative network analysis gene connectivity
- •Guilt by association—functional annotation

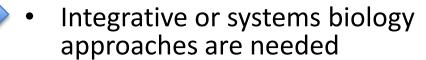
Network Analysis to Network Inference

Dissect functional relationships of thousands of genes to a few modules.

Can relate *complex* genetic and phenotypic variables to these modules.


Disease complexity and heterogeneity: some lessons

Challenge


- Heterogeneity
 - Genetic
 - Phenotypic

- Etiological overlap
 - Sz, ADHD, ASD, epilepsy
- Multiple levels of dysfunction lead to abnormal behavior and cognition
 - connecting genetic variation to targetable mechanisms.

Solution

- Importance of community resources (not consortia)
- Data sharing (high quality)
- Cross disorder study
 - Measure appropriate phenotypes
 - Data repositories that work

- Convergent approaches
 - True collaborative research
 - Multidisciplinary
 - Analysis vs. Data Generation

What we have learned from ASD genetics

Successes

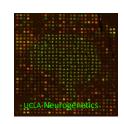
- Many genetic causes of autism spectrum disorders (ASD) have been identified.
 - This has been fueled by large scale shared patient resources for research that are readily available.
 - True collaboration and multidisciplinary approaches
- This knowledge greatly facilitates development of multiple model systems and drug development (based on monogenic forms).

Challenges

- ASD is an example of extreme genetic/etiologic heterogeneity.
- Disease etiologies don't obey diagnostic boundaries
- Future: EMR based genetics (scale, and cross disorder).
- Model validity needs to be carefully assessed.
- Will therapy developed for one form of ASD be relevant to others?

Acknowledgements

- Geschwind lab:
- Gena Konopka*
- Irina Voineagu
- Kellen Winden
- Giovanni Coppola
- Brett Abrahams*
- Maricela Alarcon
- Jenni Lowe
- Neel Parikshak
- Jason Stein
- Luis De La Torre Ubieta
- Lauren Kawaguchi, Lab manager


ACE Network: John
Constantino; Dan
Arking, Aravinda
Chakravarti, Crista LeeseMartin, David Ledbetter

- Matthew State, Yale
 - Stephan Sanders
- Bernie Devlin-Pittsburgh
- Simons Simplex Consortium
- Steve Horvath-UCLA
 - -Peter Langfelder
- Jonathan Mill--IoP
 - Patrick Johnson
- Benjamin Blencowe—U Toronto
- Xinchen Wang
- Rita Cantor, Stan Nelson-UCLA

Funding:

