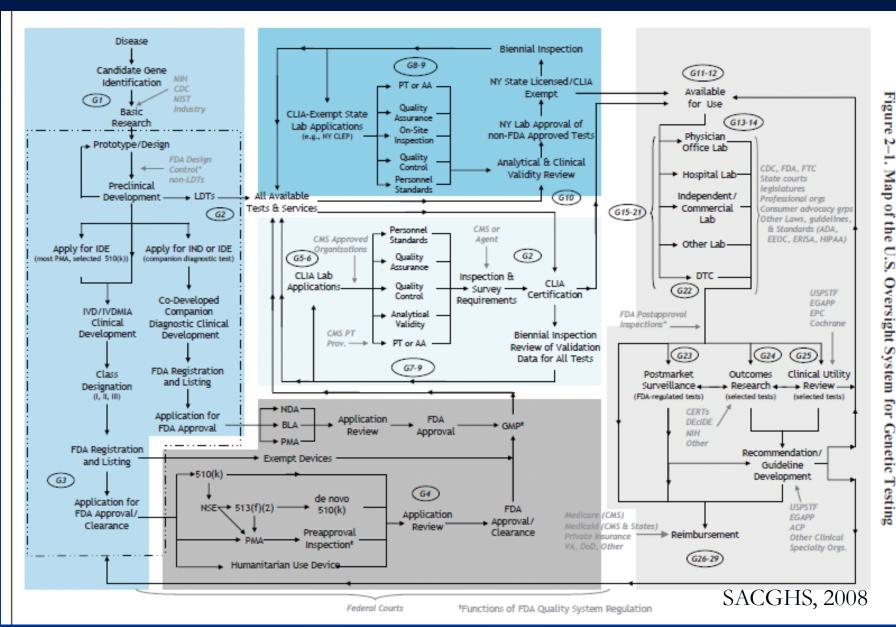
Advancing Utility and Adoption of Clinical Genomic Diagnostics: A Public Health Perspective

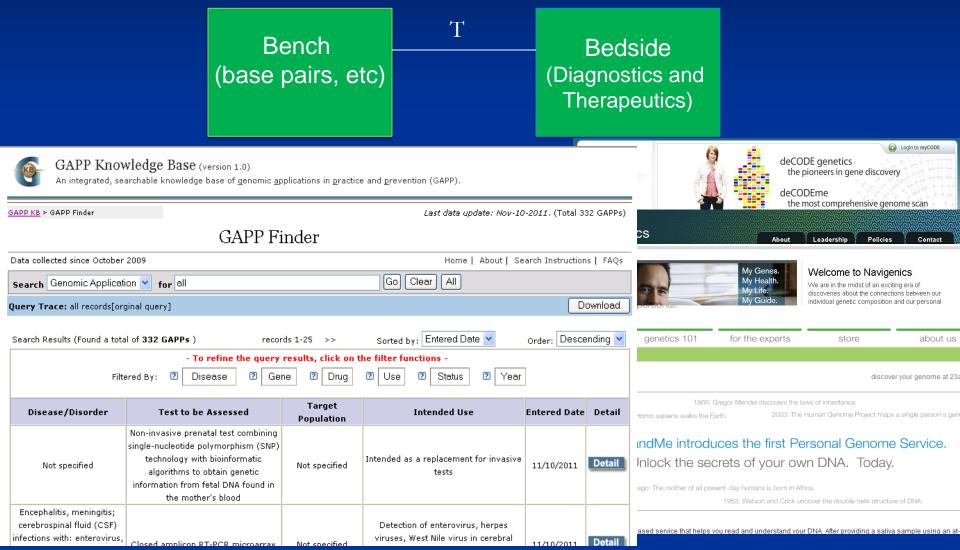
Muin J. Khoury MD, PhD

CDC Office of Public Health Genomics

NCI Epidemiology and Genomics Research Program


Questions

- What are your views of the described barriers to successful genomic test development?
- What are potential solutions?
- What are the obstacles to achieving those solutions?
- How can we overcome those obstacles?


Question 1

- What are your views of the described barriers to successful genomic test development?
 - Lack of a suitable oversight system for 21st century medicine (no need to evoke genetic exceptionalism)
 - The evidence gap in genomics
 - Stakeholders perspectives of the evidence gap
 - Less than optimal awareness and knowledge of consumers, providers and systems

U. S. System of Oversight of Genetic Testing

Current Genomics Translation Highway Allows for: "Premature Translation"

Current Genomics Translation Highway Allows for: the Phenomenon of "Lost in Translation"

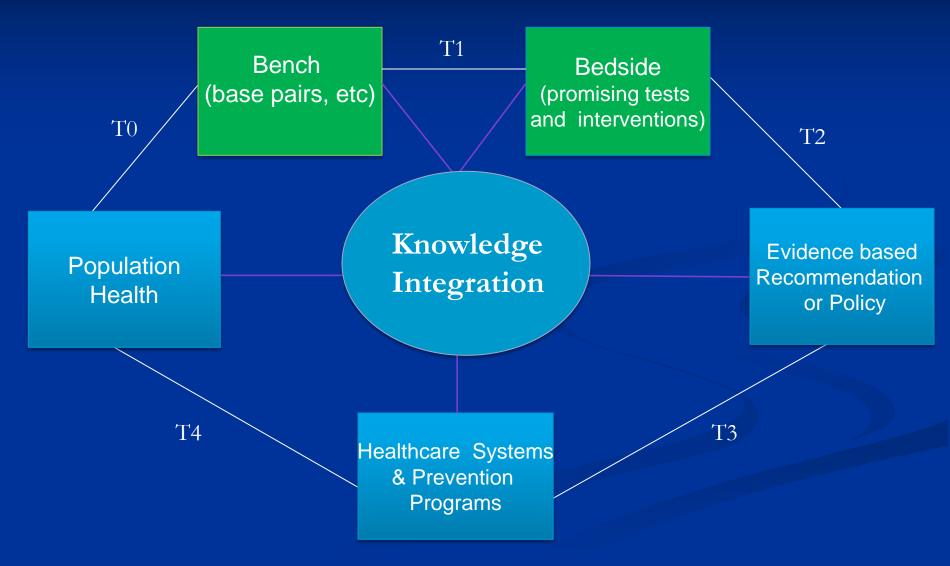
Bench (base pairs, etc)

T

Bedside (Diagnostics and Therapeutics)

Genetics in Medicine 2011

Underutilization of BRCA1/2 testing to guide breast cancer treatment: Black and Hispanic women particularly at risk Douglas F. Lewy, PhD 1,2,3 Stacey, D. Ryfield, PhD, MPH⁴, Catherine B. Comstock, MPH 5

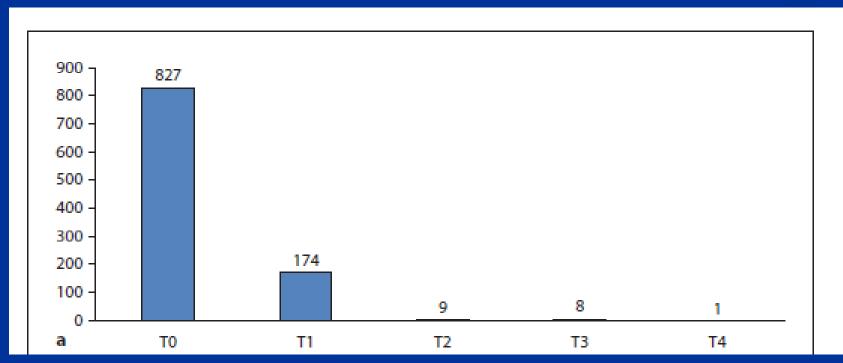

Douglas E. Levy, PhD^{1,2,3}, Stacey D. Byfield, PhD, MPH⁴, Catherine B. Comstock, MPH,⁵ Judy E. Garber, MD, MPH^{3,6}, Sapna Syngal, MD, MPH^{3,6,7}, William H. Crown, PhD⁴, and Alexandra E. Shields, PhD^{1,2,3}

Will genomics widen health disparities?

Purpose: Women with early-onset (age ≤40 years) breast cancer are at high risk of carrying deleterious mutations in the BRCA1/2 genes; genetic assessment is thus recommended. Knowledge of BRCA1/2 mutation status is useful in guiding treatment decisions. To date, there has been no national study of BRCA1/2 testing among newly diagnosed women. Methods: We used administrative data (2004–2007) from a national sample of 14.4 million commercially insured patients to identify newly diagnosed, early-onset breast cancer cases among women aged 20–40 years (n = 1474). Cox models assessed BRCA1/2 testing, adjusting for covariates and differential lengths of follow-up. Results:

to assess risk of hereditary breast and ovarian cancer (HBOC) is among the most established genetic tests in clinical use. 1-3 Guidelines and commercial testing for *BRCA1/2* mutations have been available for more than a decade, 4 and most health insurers now reimburse at least partially for these tests in individuals at high risk for mutations. 5 National guidelines recommend that women diagnosed with early-onset breast cancer receive *BRCA1/2* testing to guide treatment decisions. 6 Among patients newly diagnosed with cancer, a positive test result will often prompt more aggressive surgical treatment (e.g., bilateral salpingo oophorectomy or prophylactic contralateral mastectomy)

Genomics Translation Highway: The "Public Health Genomics" Model Allows for the "Right Balance"


Genomics Translation Beyond Bench to Bedside: The Road Less Traveled

Public Health Genomics 2010

Translational Research in Cancer Genetics: The Road Less Traveled

S.D. Schully^a C.B. Benedicto^b E.M. Gillanders^a S.S. Wang^c M.J. Khoury^{a, d}

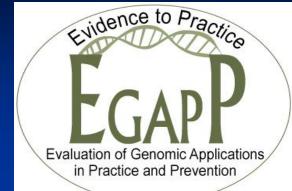
^aDivision of Cancer Control and Population Sciences and ^bOffice of Workforce Development, National Cancer Institute, Bethesda, Md., ^cDivision of Etiology, Department of Population Sciences, City of Hope, Duarte, Calif., and

Stakeholder "Push" and "Pull" Forces in Genomics Translation

Very Little Information from Translational Research Discovery Health Health Health T2 **T3** T4 **Application** Practice **Impact** Shifting evidence thresholds for guidelines/policies Stakeholders **PRACTICE** DISCOVERY

 "Ultimately clinicians and health care systems will have to decide which evidentiary frameworks are best suited for their needs" Beitelshees & Veenstra, JAMA 2011

Question 2


What are potential solutions?

- We need a 21st Century "model" oversight system
- Public and private funding of T2+ research
- We need a knowledge integration enterprise involving knowledge synthesis and stakeholder convening & brokering (EGAPP and GAPPNet concepts)
- We need to increase awareness and knowledge of consumers, providers and systems

Knowledge Synthesis EGAPP "Model Process"

www.egappreviews.org

- Since 2005, independent multidisciplinary working group
- Developed methods and outcomes processes
- Conducted systematic reviews
- Developed recommendations
- Pointed to evidence gaps
- Tackling evidentiary standards for whole genome sequencing

Not All "Genomic Diagnostics" Are Used for "Diagnosis" Measuring Validity and Utility by Intended Use

Application of test	Clinical validity	Clinical utility
Diagnosis (symptomatic patient)	Association of marker with disorder	Improved clinical outcomes ^a —health outcomes based on diagnosis and subsequent intervention or treatment
		Availability of information useful for personal or clinical decision-making
		End of diagnostic odyssey
Disease screening (asymptomatic patient)	Association of marker with disorder	Improved health outcome based on early intervention for screen positive individuals to identify a disorder for which there is intervention or treatment, or provision of information useful for personal or clinical decision making
Risk assessment/susceptibility	Association of marker with future disorder (consider possible effect of penetrance)	Improved health outcomes based on prevention or early detection strategies
Prognosis of diagnosed disease	Association of marker with natural history benchmarks of the disorder	Improved health outcomes, or outcomes of value to patients, based on changes in patient management
Predicting treatment response or adverse events (pharmacogenomics)	Association of marker with a phenotype/metabolic state that relates to drug efficacy or adverse drug reactions	Improved health outcomes or adherence based on drug selection or dosage

[&]quot;Clinical outcomes are the net health benefit (benefits and harms) for the patients and/or population in which the test is used.

FDA Boxed Warning is Generally Based on Clinical Validity

FDA Boxed Warning on Clopidogrel

Warning: Diminished Effectiveness in Poor Metabolizers

- Effectiveness of clopidogrel depends on activation to an active metabolite by the cytochrome P450 (CYP) system, principally CYP2C19
- Poor metabolizers treated with clopidogrel at recommended doses exhibit higher cardiovascular event rates following acute coronary syndrome (ACS) or percutaneous coronary intervention (PCI) than patients with normal CYP2C19 function
- Tests are available to identify a patient's CYP2C19 genotype and can be used as an aid in determining therapeutic strategy
- Consider <u>alternative treatment</u> or treatment strategies in patients identified as CYP2C19 poor metabolizers

PLAVIX (clopidogrel bisulfate) tablets Pl.

Recommendations for Use (and Reimbursements) Are Usually Based on Clinical Utility

ACCF/AHA Clopidogrel Clinical Alert: Approaches to the FDA "Boxed Warning". A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the American Heart Association

David R. Holmes, Jr, Gregory J. Dehmer, Sanjay Kaul, Dana Leifer, Patrick T. O'Gara and C. Michael Stein Circulation published online Jun 28, 2010;

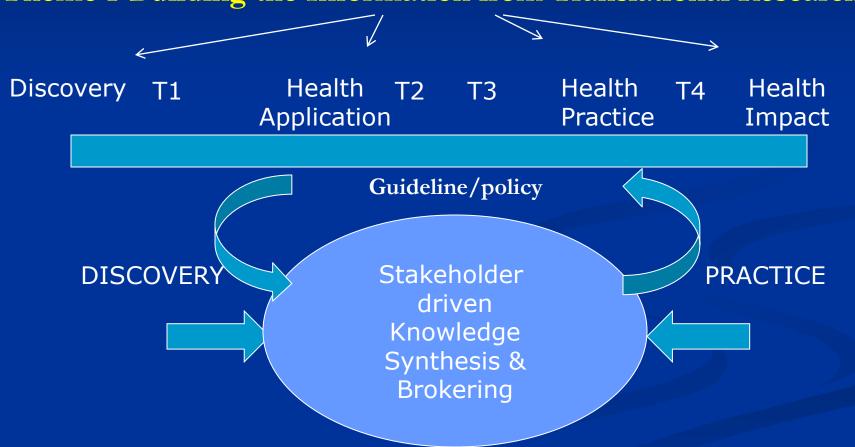
ment to coochita.

2. Clinicians must be aware that genetic variability in CYP enzymes alter clopidogrel metabolism, which in turn can

Clinical validity

Clinical utility

compractations.


5. The evidence base is insufficient to recommend either routine genetic or platelet function testing at the present time. There is no information that routine testing improves outcome in large subgroups of patients. In

From David Veenstra

GAPPNet (The Concept)

Putting Stakeholders "in the Same Room" and Connecting them to Data

Theme 1-Building the Information from Translational Research

Theme 2- Dealing with Stakeholder Forces Affecting Translation

Question 3

What are the obstacles to achieving those solutions?

- Politics/incentives in health and healthcare (no need to evoke genetic exceptionalism)
- No incentives for public and private funding of T2+ research
- No incentives for knowledge synthesis and stakeholder convening
- No incentives for public and provider education

Question 4

- How can we overcome those obstacles?
 - Develop and apply pilot oversight "experiments" that deal "insufficient evidence" (no need for genetic exceptionalism)
 - Public and private T2+ initiatives (ARRA, GAPPNet, PCORI, etc..)
 - Develop a stakeholder-driven knowledge integration enterprise that explores novel methods of synthesis, decision analysis and modeling
 - Develop "dose appropriate" consumer and provider education programs

Comparative Effectiveness Research in Genomics and Personalized Medicine

Center for Comparative **Effectiveness** Research in Cancer Genomics -**CANCERGEN** Fred Hutchinson

Comparative Effectiveness in Genomic and **Personalized Medicine** for Colon Cancer Kaiser

> Through ARRA, the NCI funded 7 groups to conduct CER in GPM and develop a collaborative road map

Comparative Effectiveness in **Genomic Medicine** University of Pennsylvania

Developing Information

Infrastructure Focused

on Cancer Comparative

Effectiveness

Moffitt Cancer Center

Building a Genome Enabled Electronic Medical Record University of Virginia

Programs in Clinical Effectiveness of Cancer **Pharmacogenomics Duke University**

Clinical Validity and **Utility of Genomic Targeted** Chemoprevention of **PCa**

Wake Forest University

Exploring New Knowledge Integration Tools and Methods

Value of research (VOR) analyses

Risk-benefit modeling

Stakeholder engagement

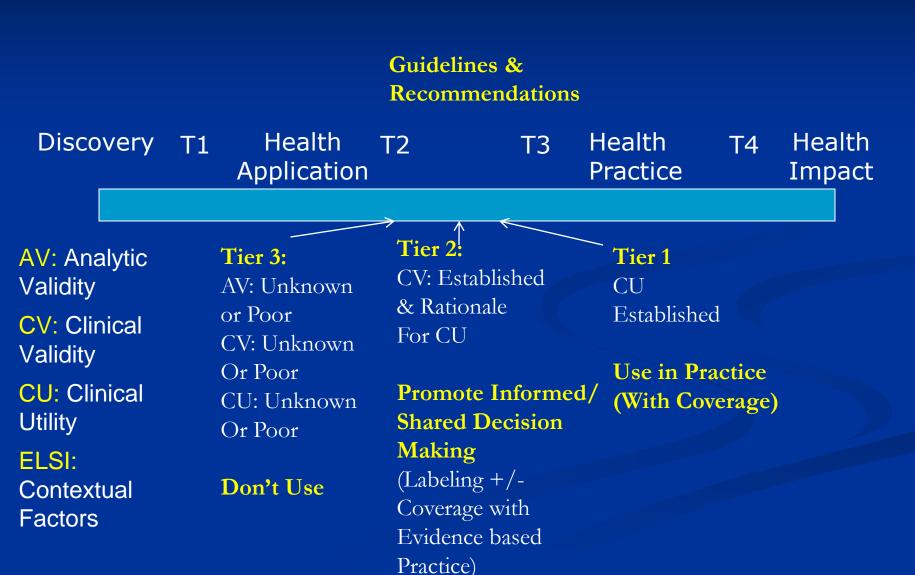
 Binning genomic information into actionable components (return of results in WGS)

Categories of Genomic Applications by Levels of Evidence and Uncertainty: Use of Modeling

Figure 3. Risk-Benefit Policy Matrix						
	Uncertainty					
Risk-Benefit Profile	High	Moderate	Low			
Favorable	Use with evidence- development	Consider use in clinical practice	Appropriate for use in clinical practice			
Neutral	Do not use, conduct additional research	Use with evidence- development	Consider use in clinical practice			
Unfavorable	Do not use, conduct additional research	Do not use	Do not use			

Three-Tier Classification of Recommendations on Genomic Applications

- Tier 1: Ready for implementation (per evidence-based recommendation on clinical utility)
- Tier 2: Informed decision making (adequate information on analytic and clinical validity, promising but not definitive information on clinical utility)
- Tier 3: Discourage use (no or little information on validity or utility; or evidence of harm)
 - Khoury MJ et al. Genetics in Medicine 2010


Binning the Human Genome Based on Evidence base and type of Application (Berg et al, Genet Med 2011)

	Criteria:	Clinical Utility	Clinical Validity			Unknown Clinical Implications
Genes	Bins:	Bin 1 Medically actionable incidental information	Bin 2A Low risk incidental information	Bin 2B Medium risk incidental information	Bin 2C High risk incidental information	Bin 3
	Examples:	BRCA1/2 MLH1, MSH2 FBN1 NF1	PGx variants and common risk SNPs	APOE Carrier status for recessive Mendelian disorders	Huntington Prion diseases ALS (SOD1)	All other loci
	Estimated number of genes/loci:	10s	10s (eventually 100s – 1000s)	1000s	10s	~20,000

Alleles that would be reportable (YES) or not reportable (NO) in a clinical context

Variants	Known deleterious	YES	YES/NO ¹	YES/NO ¹	YES/NO ¹	N/A ²
	Presumed deleterious	YES	N/A ³	YES/NO 1	YES/NO 1	NO ⁴
	VUS	NO	N/A ³	NO	NO	NO ⁴
	Presumed benign	NO	N/A ³	NO	NO	NO
	Known benign	NO	NO	NO	NO	NO

A Public Health Genomics Model: to Accelerate Transition from Research to Practice

