
ULTRASAT: A Wide-Field UV Space Telescope

Revolutionize our understanding of the hot transient Universe

PI	E. Waxman (WIS)	
Program Manager	U. Netzer (ISA/WIS)	
Deputy PI	A. Gal-Yam (WIS)	
Camera PI	D. Berge (DESY)	
Project Scientist	Y. Shvartzvald (WIS)	
Science Lead	E. Ofek (WIS)	
Payload Lead	S. Ben-Ami (WIS)	
Technology Lead	O. Lapid (WIS)	

Funding partners	Industry partners
ISA	IAI
WIS	Elop
DESY	Tower
NASA	

Eli Waxman | Weizmann Institute of Science

ULTRASAT's uniqueness

10¹

10⁰

 10^{-1}

Key Properties

- Very large, 200 deg², field of view.
- High UV (220-280nm) sensitivity: $1.5 \times 10^{-3} \text{ ph/cm}^2 \text{ s} (900 \text{ s}, 5\sigma)$ [m = 22.4].

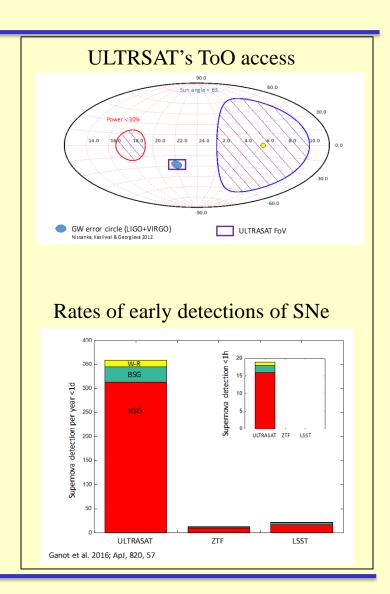
Key Capabilities

- Monitor an unprecedentedly large volume of the Universe.
- New window in wavelength (NUV) and in cadence (minutes - months).
- Accessible Universe Volume 400 600 230 Wavelength [nm]

Transient detection rates of leading surveys

1000

- Real-time alerts to ground/space-based telescopes (GEO orbit), initiate world-wide follow-ups.
- ToO: Instantaneous >50% of the sky in <15 min for >3 hr.

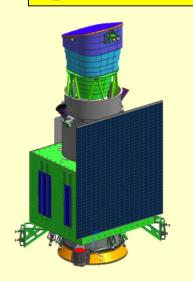

ULTRASAT: Key Science Goals

EM counterparts to GW sources

- Fast localization of NS-NS/BH mergers:
 Rapid, <15min, access to >50% of sky,
 Cover GW error box in a single image.
- Localize mergers to their host galaxies.
- Provide UV light curves to measure ejecta properties.

Deaths of massive stars

- High quality early high cadence UV data,
 Rapid alerts for follow-ups,
 100's of SNe including rare types.
- Measure properties of supernova progenitors.
- Map progenitors to supernova types.
- Reveal pre-explosion evolution and mass loss.


ULTRASAT: A broad science impact

Source Type		# Events per 3 yr mission	Science Impact		
Supernovae					
	Shock break-out and Early (shock cooling) of core collapse SNe	>40 >500	Understand the explosive death of massive stars		
	Superluminous SNe	>250	Early evolution, shock cooling emission		
	Type Ia SNe	>40	Discriminate between SD and DD progenitors		
Compact Object Transients					
	Emission from Gravitational Wave events: NS-NS and NS-BH	~25	Constrain the physics of the sources of gravitational waves		
	Cataclysmic variables	>25	Accretion and outburst physics		
	Tidal disruption of stars by black holes	>250	Accretion physics, black hole demographics		
Quasars and Active Galactic Nuclei					
	Continuous UV lightcurves	>7500	Accretion physics, BLR Reverberation mapping		
Stars					
	M star flares	>4×10 ⁵	Planet habitability, magnetospheres		
	RR Lyrae	>1000	Pulsation physics		
	Nonradial hot pulsators, e.g., α Cyg, δ Scuti, SX Phe, β Cep etc. types	>250	Asteroseismology		
	Eclipsing binaries	>400	Chromosphere and eclipse mapping		
Galaxies and Clusters					
	All Sky Survey – galaxies	>108	Galaxy Evolution, star formation rate		

ULTRASAT: Implementation & Collaboration

Management: Program Office @ WIS

Spacecraft: IAI

Telescope: Elop/Elbit

Focal Plane Array DESY/Helmholtz (Germany)

Sensor: Tower (Israel)

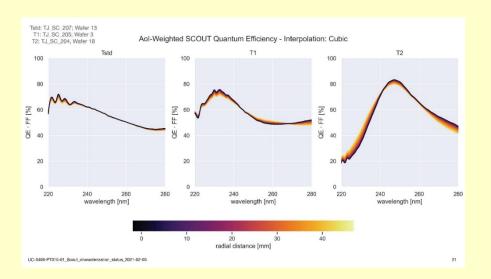
Hosted launch to GTO: NASA (MoU negotiations near final stage)

Launch Q1 2025

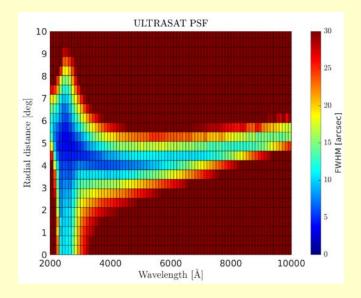
>3.5 year science mission (6 year fuel)

Dimentions: 1.5 x 1.7 x 3.4 (m³)

Power: 500 W


00 mm

Ø 670 mm


Mass: 500 + 630 (Prop) kg

ULTRASAT: Key technology challenges

• CMOS sensor - UV QE>60% (Tower).

 UV optics performance across a wide FOV (WIS/Elop).

ULTRASAT: Status & Timeline

- The program is on track.
- Full teams have been assigned and are working.
- Major risks identified and managed:
 - o Challenging time line,
 - o Complex Interfaces,
 - Contamination prevention and control.
- Mission cost (including launch) approx.
 \$110M.

Mile Stone	ARO + Month	Time
Kick off	0 (23 September 2019)	"Q4" 2019
SRR	3	Q1 2020
SDR	6	Q2 2020
PDR	17	Q1 2021
CDR	27	Q4 2021/ Q1 2022
Supply of FPA ("camera")	42	Q1 2023
Supply of Telescope	52	Q4 2023
Satellite ready	52	Q3 2024
Launch	63 to 66	Q1 2025

ULTRASAT: Science Collaboration

- 13 Science Working Groups WG members receive real time data access.
 Open to all (and already including most) Israeli astronomers.
- NASA Launch contribution- MoU negotiations near final stage,
 Science return: US PIs (NASA funded) will join WG's,
 NASA project scientist: J. Rhoads.
- DESY Camera contribution Science return: 3 DESY PIs in WG's.
- Rubin (LSST) collaboration- advanced negotiations.

ULTRASAT: Science impact

- Revolutionize our view of the hot transient Universe:
 - Discovery volume 300 X GALEX,
 - Continuous min-mon cadence at 22.4mag in a new window (NUV),
 - Real-time alerts to ground/space-based telescopes.
- A broad impact:

GW sources, SNe, variable and flare stars, AGN, TDEs, compact objects, galaxies.

Groundbreaking science with an affordable satellite mission.